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BEN DELL’ INTELLETTO

Whenever Good of Intellect comes in,
Then peace is with us, and a soft control
Of all harsh thinking; and but one desire
Fills every bosom, —to forget the din
Of outside things, and render up the soul
To friendship’s banquet by an evening fire.
Then is the season in this world of sin
That brings new strength, and keepeth us heart-whole
Amid the changes that distress and tire;
And when from wisdom we have wanderers been,
So that a stupor on the spirit stole
From things unknown,* with visions dark and dire,
In this high presence we restore ourselves
More than by all the volumes on our shelves.

T.W. Parsons

* “E stupor m’ eran le cose non conte.” -Purgatorio, xv. 12.



PREFACE

The primary sources for this study are the eight volume Collected Papers of
Charles Sanders Peirce and the unpublished manuscripts in the Houghton
Library at Harvard University. Reference to the Collected Papers(CP)will be
by the now standard decimal notation according to which, for example, the
number 4.372 refers to paragraph 372 of volume 4 of CP. Reference to the
unpublished manuscripts, with one exception, will be by the numbers given
in Richard Robin’s Annotated Catalogue and ‘Supplementary Catalogue’;
these numbers will occur with the prefix ‘Ms’. An extra ‘s’ in the number of
an unpublished manuscript—as in ‘Ms 499(s)’ and ‘Ms S 27°—will indicate
that the item is listed in Robin’s ‘Supplementary Catalogue’. The one ex-
ception to this method is Ms 339, a notebook whose dated entries range
from 1865 to 1909; since it is frequently useful to identify this manuscript
as the source of a quotation or reference, I will ordinarily refer to it by the
letters ‘LN’ for ‘Logic Notebook’.

Most of the material on the graphs is to be found in the unpublished
papers. Here there are more than thirty different expositions of systems of
logical graphs, and here there is frequent use of ‘graphs to introduce or
clarify some logical or mathematical or philosophical concept. The exposi-
tion given below is the result of an attempt to distill out of this plenitude—
plus the material in CP—a single adequate presentation of the system of
existential graphs which would include the major and lasting revisions which
Peirce introduced from time to time. I do not claim to have exhausted the
topic, nor has that been my intention. My aim has been, rather, to make
this material more accessible to students of Peirce who, for one reason or an-
other, have not yet directed their attention to this important part of his
work.

Max Fisch has been in on this project since 1960, when it began as a
dissertation under his direction. He made it possible for me to work with
the Peirce papers for extended periods of time; he has been unfailingly
generous with his time and with resuits of his own research whenever I
called for help; and many of his penetrating observations were accompanied
by suggestions that are now incorporated into the text. But it is not for
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these reasons, sufficient though they are, that I dedicate the book to him.
The reasons for that are expressed in the poem by Parsons. It was written
for Benjamin Peirce, Charles’s father. I should like to have written it myself
for Max Fisch.

Several members of the University of Waterloo, friends and students of
mine, have assisted me with the final revisions of this book. Beverley Kent
in particular contributed to the major overhaul of the entire manuscript. E.
James Crombie and Christopher P. Gray were of help especially in the more
strictly logical matters, both causing important improvements in several
places, such as in the statement of rules of transformation. Lorraine C.
Beattie, who proof-read all of it, and Charles J. Dymer made many valuable
suggestions and caught some ambiguities that had actively resisted dis-
covery. Chapters 5 and 6, which cost me months of concentrated effort,
owe much to the work of Mr. Gray and Miss Beattie. No doubt errors and
ambiguities remain.

Throughout the book, special symbols and even letters of the alphabet
drafted for technical use will be used as names of themselves wherever no
ambiguity results from such usage. To assist the reader with terminology, a
glossary is given in Appendix 5. Full information on the books and articles
mentioned and quoted can be found in the bibliography. The dedicatory
poem is in the Houghton Library, reference number *fAC85.P2566.B891.
On a sheet dated December 23, 1872, Parsons wrote:* ‘Ben dell’ Intelletto’
in Dante’s Inferno meant Intellectual Good; and Benjamin Peirce, CSP’s
father, we called ‘Ben dell’ Intelletto’.”

I wish to express my appreciation to the Department of Philosophy at
Harvard University for permission to examine the Peirce papers in the
Houghton Library and to quote extensively from them. Quotations from
Collected Papers of Charles Sanders Peirce, edited by Charles Hartshomne,
Paul Weiss, and Arthur W. Surks, Vols. I.VIII, are made with the kind
permission of The Belknap Press of Harvard University Press, and are copy-
right 1931, °32,°33,°34, ’35, °58, 59, *60, ’61, *62, and ’63 by the President
and Fellows of Harvard College.

This book has been published with the help of a grant from the Humani-
ties Research Council of Canada, using funds provided by the Canada Coun-
cil.
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INTRODUCTION

Above the other titles he might justly have claimed, Charles S. Peirce prized
the title ‘logician’. He expressed in several places his confidence that his own
special talent lay in the direction of logical analysis." Indeed, in the judg-
ment of some of the best authorities in the field today, he was a logician of
great originality and power.?

Late in 1896 Peirce invented a system of logic diagrams which he soon
began to call the ‘existential graphs’ (‘EG’ abbreviates ‘the system of exis-
tential graphs’). He was 57 years old at the time, and had already made what
scholars take to be his most significant contributions to modern symbolic
logic.* In fact, his interest in the graphs grew, to a large extent, out of his
pioneering work on symbolic logic. As he developed the system in the years
after 1896 he began to find it relevant to such topics as modality, the
theory of signs, his doctrine of the categories, and his philosophy of prag-
maticism. By 1905 Peirce claimed that EG was “quite the luckiest find that
has been gained in exact logic since Boole™;5 in 1908 he called it—or the
theory of logical analysis which he based on it—his ‘chef d’oeuvre’;® and in
1909 he wrote to William James that EG '“ought to be the logic of the
future”.”

In view of these statements by Peirce, it is interesting that no one has
agreed with him regarding the value of his graphs. Perhaps this should not be

1 See for example Ms 631, ‘Meaning, Preface’, pp. 2ff, dated August 20, 1909. Cf.
Peirce (1953), 37.

2 Sufficient evidence for this can be found in Appendix 1.

3 Ms 498; Ms 500; a letter from Peirce to F. A, Woods, begun October 4, 1913, in Ms
L 477; cf. Ms 1589.

4 See note 2.

5 Ms 280, p. 22, a 1905-1906 manuscript on pragmaticism.

6 The phrase occurs in a letter to Philip E. B. Jourdain (so identified by Max H.
Fisch), dated December 5, 1908. Hence the letter is a possible source for the quotation
on p. 291 of CP 4. The passage is ambiguous, however, and needs further comment,
which is given at the end of Chapter 7 below.

7 The date is December 25, 1909, Ms L 224.
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surprising. Peirce’s contemporaries had the advantage of some popular lec-
tures on the graphs (the Lowell Lectures of 1903, principally), but his
graphical publications were few and not easy to understand, as he admitted
himself. What was needed was practice with the system, the kind of drill one
gets in a classroom. And Peirce was not given the opportunity to provide
this. When the volumes of the Collected Papers were being prepared, the
editors had to choose from a large number of manuscripts and partial
manuscripts which revealed several stages of development in EG. Quite
properly they selected what Peirce had published, and a good bit of impor-
tant material besides, but some of the simpler and more informal accounts
were not included. The result has been that many accounts of Peirce’s work
simply ignore EG. James K. Feibleman, in his An Introduction to Peirce’s
Philosophy, writes at some length regarding Peirce’s analysis of the nature of
mathematical reasoning. In this connection he points out the importance
Peirce attached to diagrammatic thinking;?® and although this would seem to
be a natural place to mention the logic diagrams, no explicit reference to EG
occurs. There is explicit reference to EG in Murray G. Murphey’s The Deve-
lopment of Peirce’s Philosophy, and there are other passages which suggest
the system.® Yet Murphey gives no indication that the graphs played any
part in, or were at all related to, Peirce’s philosophical development.

Even in works which concentrate on Peirce’s contributions to formal
logic, little is said of his work on logic diagrams. George D. W. Berry makes
no mention of it at all in his article “Peirce’s Contributions to the Logic of
Statements and Quantifiers”. Alonzo Church’s Introduction to Mathematical
Logic contains a wealth of historical material in special sections and in
footnotes. He makes numerous references to Peirce, but none to EG. Two
recent volumes which must be consulted in any treatment of the history of
logic are I. M. Bochenski’s Formal Logic and William and Martha Kneale’s
The Development of Logic. Bochenski’s book is essentially a source book,
the Kneale volume is essentially exposition; they complement each other
admirably. Both books treat of Peirce’s work in several connections, but
there is no mention of his work on logic diagrams.

Authors who do acknowledge the existence of EG consider it too compli-
cated to be of any value. W. V. O. Quine was one of the first to mention the
graphs, and he did so in his 1934 review of CP 4. There he notes an
important theme emphasized by Peirce, that the graphs were intended to

8 Feibleman (1946), 108-109, 135-143. Let me state at the beginning, and once
and for all, that these remarks must not be interpreted as wholesale criticism of the
authors cited. On the contrary, 1 benefit greatly from their works, which I value
highly, My task is far easier than theirs was, since I take for my topic a part only
of Peirce’s huge production.

9 Murphey (1961), 399. See also 197n.22, 310n.12, and 342.



INTRODUCTION 13

facilitate the analysis of logical structure, but not necessarily to facilitate
the drawing of inferences. Peirce’s insistence that his graphs were not
designed to function as a calculus will be discussed in a later chapter. But
Quine, after claiming that EG would be too cumbersome to function as a
calculus, is not even optimistic about the analytical value of the graphs:

One questions the efficacy of Peirce’s diagrams, however, in their analytical
capacity as well. Their basic machinery is too complex to allow one much
satisfaction in analyzing propositional structure into terms of that machin-
ery. While it is not inconceivable that advances in the diagrammatic method
might open possibilities of analysis superior to, those afforded by the alge-
braic method, yet an examination of Peirce’s px’oduct tends rather, apago-
gically as it were, to confirm one’s faith in the algebraic approach [Quine
(1934), 552].

Quine’s opinions are everywhere worth serious consideration, and the fate of
diagrams generally in the progress of logic since Peirce seems initially to
confirm this judgment. Aside from the diagrams used in elementary logic
texts to illustrate the categorical syllogism, logic graphs are rarely used
today.

The case against the graphs can be argued from a somewhat different
point of view. Berry, for example, in the article cited above, claims that
Peirce made little or no contribution to either the logic of statements or the
logic of quantifiers after 1891 (Berry [1952], 158-59, 165). Now if Berry
is right, then, since Peirce discovered EG in 1896, EG contributes little
or nothing to these areas of logic. Again, W. B. Gallie, in his Peirce and
Pragmatism, claims that after 1891 Peirce’s writing “like his thought,
becomes looser: sometimes it rambles, at other times it becomes excessively
disjointed” (Gallie [1952], 55). The tendencies, he says, are even plainer
in certain papers written after 1900, papers in which

sense of shape, sense of proportion, and sustained unity of direction are
often entirely lost. There are still powerfully developed paragraphs and
pregnant dicta; but now Peirce rambles persistently, repeats himself, and
employs expressions and arguments which, except for those fully acquaint-
ed with his thought, are obscure to a degree [Gallie (1952), 55-56].

There is a hint of this in Thomas A. Goudge’s The Thought of C. S. Peirce.
He finds that EG, at least as Peirce left it, seems far inferior to logical
algebras, and he views the system as complicated and cumbersome:

One can hardly avoid the conclusion that in the end Peirce permitted his
graphs to become ... a “plaything”. The fascination they exerted led to a
steady increase in their internal complexity, without any corresponding
increase in their positive results [Goudge (1950), 120].
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Finally, Martin Gardner calls EG the most ambitious diagrammatic system
yet attempted. His discussion, in Logic Machines and Diagrams, includes no
examples of the graphs themselves, but is confined to general remarks. He
says, for instance, that Peirce “held a greatly exaggerated notion of the value
of his diagrams” (Gardner [1958], 58). Besides, Peirce’s papers on the
graphs

are written in such an elliptic, involuted style that one is led to wonder if
Peirce harbored unconscious compulsions toward cloudy writing that would
enable him to complain later of his critics’ inability to understand him. Add
to this opaque style his use of scores of strange terms invented by himself
and altered from time to time, and the lack of sufficient drawings to il-
lustrate the meaning of these terms, and the task of comprehending his
system becomes formidable indeed.!®

Now with regard to this last point, Peirce was aware that EG involved a lot
of new terminology, and an unusual notation; yet he continued to believe
that it was essentially “very easy”(Ms 450, Ms 500). He gives this advice for
approaching an exposition of the graphs:

Let [the student] read these permissions and the commentary as he would
listen to the rules of a new and intricate game, very closely attentive, but
wide awake to the purpose of preparing for a lively and lightsome contest.
The writer has a dear friend [William James?] of most active and agile
intellect, and most spiritually minded withal. Moreover, he is a pragmatist of
the strait sect himself. But when he comes to hear the writer lecture, he
seats himself, contracts his brow, and evidently prepares himself for a tussle.
The natural result is that he does not understand one word; while if he had
made up his mind that understanding the doctrine was like stepping from a
floating log into the water, he would have no more difficulty than the
simple have, who always understand when they are not scared [Ms 280, pp.
23-24],

The next step is to “devote some hours daily for a week or two to practice
with it” (4.617).

Peirce also believed that the graphs afforded the simplest available intro-
duction to the logic of relatives. That this was important to him is clear
from the following passage, written in 1898:

When people ask me to prove a proposition in philosophy I am often o-
bliged to reply that it is a corollary from the logic of relatives. Then certain
men say, I should like exceedingly to look into this logic of relatives; you

% Gardner (1958), 55-56. Incidentally, Gardner’s excellent little book (recently re-
issued as a paperback) contains some nice Peirce quotations that are not included in CP.
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must write out an exposition of it. The next day I bring them a MS. But
when they see that it is full of A, B, and C, they never look at it again. Such
men—oh, well.!!

The view that Peirce’slater writings as a whole show evidence of encroaching
senility cannot survive a serious study of those writings. The availability of
the Peirce manuscripts on microfilm makes it much easier for anyone to
engage in such a study. Nor is it true that Peirce’s work on logic was finished
by 1885. Recent studies by Fisch, Roberts, Turquette, and Zeman, for
example, show that his later work must be considered significant (see the
bibliography for these items).

As to the question of algebra versus diagram, Peirce recognized in 1902
that it was not logical graphs, but logical algebra which had chiefly been
pursued (3.620). Still, in defining symbolic logic as deductive logic “treated
by means of a special system of symbols™ he was unwilling “to confine the
symbols used to algebraic symbols, but [would} include some graphical
symbols as well” (4.372). The algebraic notations continue to be popular—1
like them myself—and it may be difficult to fit EG.into such frameworks.
But then, as Rulon Wells suggests, it might be rewarding to “shiftattention
to the problems of comparing frameworks” (Wells [1959], 210).

This book is intended to put the reader into a position to judge for
himself about the value of the graphs. This involves, among other things,
some understanding of the way EG fits into Peirce’s philosophy. The next
chapter, therefore, will show that EG is a development of several strains of
thought that had occupied Peirce’s attention since the late 1860’s; Chapters
5, 6, and 7 examine similar and later connections. It should perhaps be
pointed out that there are two or three passages in Chapter 2 which might
be understood more easily after the exposition of EG has been given in full.
As for the exposition itself, I hope it gives that simple introduction to the
logic of relatives that the graphs were designed to provide.

11 The last sentence of the quotation, subsequently deleted by Peirce himself,
originally read as follows: “Such men are intellectual petit crevés, nice to have
around,———". Ms 437, p. 11. A slightly edited version of the passage appears in 1.629.
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THE DEVELOPMENT OF EXISTENTIAL GRAPHS

2.1 PEIRCE’S EARLY EMPHASIS ON DIAGRAMMATIC THINKING
AND ANALYSIS

According to Peirce’s own account, his first exposure to logic occurred
when he was twelve or thirteen years old,' and he never lost interest in it
after that. Perhaps as early as 1870, when his father defined mathematics as
“the science which draws necessary conclusions” (4.229), Peirce thought of
logic as a kind of analysis:

In truth, no two things could be more directly opposite than the cast of
mind of the logician and that of the mathematician . ... The mathemati-
cian’s interest in a reasoning is as a means of solving problems-both a
problem that has come up and possible problems like it that have not yet
come up. His whole endeavor is to find short cuts to the solution. The
logician, on the other hand, is interested in picking a method to pieces and
in finding what its essential ingredients are. He cares little how these may be
put together to form an effective method, and still less for the solution of
any particular problem. In short, logic is the theory of all reasoning, while
mathematics is the practice of a particular kind of reasoning.?

Now ‘the theory of all reasoning’ is too broad for our study of Peirce’s logic
diagrams. Formal or deductive logic is our concern. Beginning with Peirce’s
characterization of mathematics as the practice of necessary reasoning, we
concentrate on logic as the study or analysis of necessary reasoning.

Peirce’s analysis of mathematical reasoning had convinced him, as early as
1869, that progress in mathematics, as in science, was tied to the use of
observation. If it seems strange to speak of mathematics as a science for
which observation is relevant, Peirce explains that it is “observation of artifi-
cial objects and of a highly recondite character”; indeed, ““as the great mathe-

1 Peirce (1953), 27, 32 (a letter dated December 23, 1908). See also Murphey {1961),

17.
2 This is from pages 34 of the undated Ms 78 in which Peirce recalls how his father
came to define mathematics as he did in 1870.
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matician Gauss has declared—algebra is a science of the eye”(1.34).The use
of letters in algebra, for example, provides a kind of diagram which can be
experimented upon and observed.

Peirce thought that the use of such a notation in logic would be of value
not only theoretically, but even practically, because of the economy and
convenience of expression it would provide (3.45, 99). And in 1870, follow-
ing “De Morgan’s Open Sesame” (4.615), he proposed such a notation for the
logic of relatives (3.45-149). Of course, the employment of such devices is
at least as old as Aristotle, and even the ordinary syllogistic formula

All MisP

SisM

L SisP
“is really a diagram of the relations of S, M, and P. The fact that the middle
term occurs in the two premisses is actually exhibited, and this must be
done or the notation will be of no value”(3.363). But Peirce’s extension of
the use of such devices to the logic of relatives constituted a genuine ad-

vance.

Thus by 1870 Peirce had begun to develop an interest in diagrammatic
thinking and the logic of relatives. These two interests, however, were not
really combined or fused together until twelve years later. It is true that
Peirce considered algebraic formulas to be diagrams of a sort; but it is also
true that these formulas, unlike other diagrams, are not ‘iconic’—that is,
they do not resemble the objects or relationships they represent. Peirce took

this to be a defect. But is was not untill 1882 that he attempted to con-
struct a more iconic system of representation for the logic of relatives.

2.2 THE EARLIEST APPLICATIONS OF THE DIAGRAMMATIC
METHOD TO THE LOGIC OF RELATIVES

For five years, from 1879 to 1884, Peirce taught logic at the Johns Hopkins
University.> He was associated there with James J. Sylvester, who, with
William K. Clifford, had begun (in 1877 or 1878) to use chemical diagrams
to represent algebraic invariants (Murphey [1961], 196-197). It is very
probable that this association was influential in Peirce’s application of such
diagrams to logic. Years later, in 1896, Peirce pointed out the connection
between his entitative graphs (see below) and chemical diagrams, and he
defined the term ‘graph’ as “Clifford’s name for a diagram, consisting of
spots and lines, in imitation of the chemical diagrams showing the consti-
tution of compounds” (3.468, 469-470).

3 For an account of Peirce’s stay at Johns Hopkins see Fisch and Cope (1952).



18 THE DEVELOPMENT OF EXISTENTIAL GRAPHS

The first effects of this and earlier influences on Peirce are found in a
letter he wrote to his student, O. H. Mitchell, on December 21, 1882. This
letter contains perhaps the first attempt by anyone to apply diagrams to the
logic of relatives in general. It is by no means the first application of diagrams
to the purposes of logic; Leonhard Euler made use of circle diagrams to treat
of the logic of classes (the traditional syllogistic) as early as 1761, and in 1880
John Venn introduced a system of interlocking circles for the same pur-
pose.* But the traditional syllogism comprises only a small part of the logic
of relatives in general.

Peirce’s letter (Ms L 294) begins as follows

The notation of the logic of relatives can be somewhat simplified by spread-
ing the formulae over two dimensions. For instance suppose we write

()

to express the proposition that something is at once benefactor and lover of
something. That is,

Z, Zy byy Gy > 0.

Before we comment on the diagram itself, let us clarify Peirce’s algebraic
formulation of the proposition. The sigma, Z, is Peirce’s symbol for the
existential quantifier, usually symbolized by 3 in contemporary systems.
Peirce used the pi, I1, for the universal quantifier. In contemporary systems,
if a special symbol is used at all, it is usually the inverted A, that is,V. In
Peirce’s formula, the sign by, is a numerical coefficient whose value is 1 in
case x is a benefactor of y, and O in the opposite case. A similar analysis is
given the sign £, .. Peirce prefixed the quantifiers Z and II to such coeffi-
cients to form numerals, and then he formed statements from these nume-
rals by adding the suffix >O. His reason for constructing the statements in
this way was that “Any proposition whatever is equivalent to saying that
some complexus of aggregates and products of such numerical coefficients is
greater than zero”.’ In contemporary symbolism the quantifiers 3 and v
are prefixed, not to numerical coefficients, but to propositional functions
(or open sentences); and the result is not a numeral, but a statement or
proposition. In Principia-style notation the proposition ‘something is at
once benefactor and lover of something’ looks like this: (Ix)(Iy)[B(xy).
L(xy)], where the dot represents conjunction. This formula can be read
‘There is an individual x, and there is an individual y, such that x is bene-
factor of y and x is lover of y’.

4 A history of the use of logic diagrams is given in Gardner (1958).
5 3.351. See also 3.329 and the explanation in Berry (1952), 161-162.
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Consider now the diagram itself. Note that the lines represent indivi-
duals—persons, in this case; and note that the lines, when simply drawn on
the sheet, are to be read ‘something’ or ‘someone’. The following diagrams
illustrate certain other features of the ‘system’ Peirce had in mind. All four
of them occur in his letter to Mitchell, and all four are given algebraic
interpretations there. Figs. 1 and 2 further illustrate the use of the line as a
sign of ‘something’, and Figs. 3 and 4 illustrate Peirce’s notational device for
expressing ‘everything’. The interpretations given below are Peirce’s.

b—Q 2 £ Y
o O O 3
Fig. 1 Fig. 2 Fig. 3 Fig. 4

Fig. 1 means ‘something is at once benefactor and loved of something, that
is, something is benefactor of a lover of itself’. (Peirce’s algebraic rendition
of this expression is ExEybnyyx>O;in Principia notation, (3x) (3y)[B(xy).
L(yx)}) Fig. 2 means ‘something is a lover of itself’ (that is, Z,2,,>0 or
(3x)[L(xx)]). Fig. 3 means ‘everything is a lover of itself’ (that is, I, 2, , >0
or (vx)[L(xx)]). In this system, to draw a bar through a line is to make it a
sign of ‘everything’. And the only difference between the diagrams of Figs.
2 and 3 is the bar that is drawn through the line of Fig. 3. Fig. 4 means
‘everything is either a lover or a benefactor of everything’ (that is,
M Iy (2,4 +by >0 or (VxXvy)[L(xy)VB(xy)]—the wedge V in the latter
formula is used to represent non-exclusive alternation, while Peirce’s symbol
for this is simply an addition sign). This diagram affords a nice contrast
with the diagram given at the top of page 18; the difference between
them is that where the one diagram has ‘everything’, the other has ‘some-
thing’.

Peirce does not clearly explain the shift from conjunction to alternation
which occurs when bars are placed over the lines of the diagrams. The
following quotation appears to be an attempt to do so:

The order of attachment of like bonds is immaterial, that of unlike bonds is
material. We can use shorter and straighter lines to represent later attached

bonds. Thus
L
<y

will meanzyllx(szxy'f b,,)> O,that is, there is something of which every-
thing is either lover or benefactor; while

£
will mean lIxEy(Qxybxy)>O or everything is at once lover and benefactor
of something or other.
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We thus do away with the distinction of relative & non-relative opera-
tions, by discarding the latter altogether.

Two features of this notation—the use of the line to represent individuals
and the use of the line, simply drawn, as a sign of ‘something’—are basic in
Peirce’s final system of logic diagrams, the existential graphs. Yet it was not
until 1896 that EG was discovered. Peirce also apparently noticed this anti-
cipation of EG. In a manuscript written about 1906 he had this to say of
the development of his system of graphs:

The system of expressing propositions which is called Existential Graphs
was invented by me late in the year 1896, as an improvement upon another
system published in the Monist for January 1897. But it is curious that 14
years previously, I had, but for one easy step, entered upon the system of
Existential Graphs, reaching its threshold by a more direct way. The current
of my investigations at that time swept me past the portal of this rich
treasury of ideas. I must have seen that such a system of expression was
possible, but I failed to appreciate its merits [Ms 498, pp. 1-2].

Peirce is almost certainly referring here to the 1882 letter to Mitchell, or to
the reflections that led up to it. But what was that ‘one easy step’ to which
he refers? Peirce does not say; but it is possible that he had in mind a device
for expressing negation, since this was not provided for in the letter.

2.3 THE INFLUENCE OF KEMPE

In 1886 Alfred Bray Kempe published his “Memoir on the Theory of Mathe-
matical Form” in the Philosophical Transactions of the Royal Society of
London. This essay had a profound and lasting effect on Peirce. He must
have taken it up almost immediately, for on January 17 of the following
year he wrote a letter to Kempe about it which caused Kempe to reconsider
and revise certain paragraphs of the Memoir.® Peirce described his expe-
rience with the Memoir in this way: “The paper is so difficult that I was at
work upon it all day every day for about three weeks”.” And while studying
it, Peirce put together, for his own purposes, an index of terms of the
Memoir (Ms 1170) and a brief list of definitions headed “Kempe translated
into English” (Ms 715).

6 The revisions were published in Kempe (1887) and were prefaced by this comment:
“An interesting letter of criticism from Professor C.S. Peirce on my recently published
Memoir on the Theory of Mathematical Form has led me to reconsider certain para-
graphs therein”. The date of Peirce’s letter is given in Kempe (1897), 453.

7 The old Houghton number for this manuscript was C,3(49). I have not been able to
find its new number in Robin (1967).
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Kempe states that his purpose, in the Memoir, is “to separate the neces-
sary matter of exact or mathematical thought from the accidental
clothing—geometrical, algebraical, logical, &c.—in which it is usually pre-
sented for consideration; and to indicate wherein consists the infinite varie-
ty which that necessary matter exhibits” (Kempe [1886], 2). In order to
exhibit this mathematical form Kempe introduces a graphical notation of
spots and lines (bonds) modeled, said Peirce (3.468), after the chemical
diagrams which showed the constitution of compounds. The spots in
Kempe’s system represent ‘units’: the entities in terms of which the mind, in
the process of reasoning, deals with the subject matter of thought. “These
units come under consideration in a variety of garbs—as material objects,
intervals or periods of time, processes of thought, points, lines, statements,
relationships, arrangements, algebraical expressions, operators, operations,
&c., &c” (Kempe [1886], 2). The lines, or bonds, connect certain of the
spots—“‘one to one” (Kempe [1897], 457)—in order to divide the spots
representing the units under consideration into two sets: one set whose
units (or pluralities of units) differ from each other, and the other set whose
units (or pluralities of units) do not. The lines, Kempe claims, are not used
to represent “any relationship in the nature of a ‘connexion’, but simply to
distinguish certain pairs of things from others”.®

Peirce always referred to Kempe’s essay in terms of the highest praise.
For example, about 1905 he called the Memoir “the most solid piece of
work upon any branch of the stecheology of relations that has ever been
done”, a work which “in addition to its intrinsic value, has that of taking us
out of the logician’s rut, and showing us how the mathematician conceives of
logical objects”.® But Peirce’s admiration for the work did not prevent him
from criticizing certain aspects of it, nor did it prevent him from doing
things differently when constructing diagrammatic systems of his own.

Thus, in a manuscript dated January 15, 1889, entitled “Notes on
Kempe’s Paper on Mathematical Forms”, the idea of representing indivi-
duals by the lines of the diagrams rather than by the spots again occurs to
Peirce:

These ideas of Kempe simplified & combined with mine on the algebra of
logic should give some general method in mathematics.

8 Kempe (1897), 458. See also 456.

9 5.505.See also 3.468, 3.601, and 6.174. By ‘stecheology’ (stecheotic, stoicheiology)
Peirce meant “the general theory of the nature and meanings of signs, whether they be
icons, indices, or symbols”, 1.191, 4.9. This term, like many others in Peirce’s specialized
vocabulary, underwent some slight changes in meaning over the years. For our purposes,
however, it is not necessary to trace the history of this term throughout the Peirce
papers.
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I note that lines may be treated as monads [This is not Kempe’s proce-
dure.] & so a new graph made & the question is whether there would be any
advantage in this [Ms 714, p. 1].

As we have seen, this idea first occurred to Peirce in 1882, and it was to
become one of the fundamental conventions of EG.

Other passages indicate that Peirce kept at the job of working out a
diagrammatic treatment of logic during the years 1889 to 1896. Especially
noteworthy is an article entitled “The Critic of Arguments”, published in
1892. Consider in the first place the following remark:

I may mention that unpublished studies have shown me that a far more
powerful method of diagrammatisation than algebra is possible, being an
extension at once of algebra and of Clifford’s method of graphs; but I am
not in a situation to draw up a statement of my researches [3.418].

The collection of Peirce papers at Harvard University contains a number of
undated manuscripts on logical graphs to which Peirce could here be re-
ferring. Consider in the second place Peirce’s use of dashes in place of
demonstrative terms and nouns to produce blank forms of propositions
called ‘rhemata’. If only one noun is erased, a non-relative rhema is produc-
ed, as ¢ is mortal’. If two or more nouns are erased, the resuilt is a
relative rhema, such as * is bought by from for ’
(3.420). Consider in the third place the expressed analogy between logical
compounds and chemical compounds:

A rhema is somewhat closely analogous to a chemical atom or radicle with
unsaturated bonds. A non-relative rthema is like a univalent radicle; it has
but one unsaturated bond. A relative rthema is like a multivalent radicle. The
blanks of a rhema can only be filled by terms, or, what is the same thing,
by “something which” (or the like) followed by a rhema; or, two can be
filled together by means of “itself”” or the like. So, in chemistry, unsaturat-
ed bonds can only be saturated by joining two of them, which will usually,
though not necessarily, belong to different radicles. If two univalent radicles
are united, the result is a saturated compound. So, two non-relative rhemas
being joined give a complete proposition. Thus, to join « is mortal”
and “ is a man”’, we have “X is mortal and X is a man”’, or some man is
mortal. So likewise, a saturated compound may result from joining two
bonds of a bivalent radicle; and, in the same way, the two blanks of a dual
rhema may be joined to make a complete proposition. Thus, * loves
?, “X loves X, or something loves itself [3.421].

This article is important for several reasons. It shows clearly that the paraliel
existing between these diagrams and chemical diagrams was strong in Peirce’s
mind; it shows Peirce again using a line to represent individuals; and it
gives for the first time the kind of introduction to the terminology of the
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logic of relatives which occurs frequently in Peirce’s later manuscripts, after
he invented EG. The importance of this last point lies in the fact that Peirce
here, before EG, introduces the logic of relatives in a manner that lends
itself rather naturally to a diagrammatic system of representation.

As a final illustration of Peirce’s continuing occupation with logic dia-
grams during this period, the following selection from an unpublished part
of Peirce’s Grand Logic is presented. The passage occurs in Chapter 7 of the
book.

Such a proposition as, “Every mother loves some child of hers”, is some-
what hard to put into a shape in which mere linkings take the place of
inherences. But it is not uninstructive to consider how that could be done.
Let us imagine an object which we may call “the character of being a
mother”. It is a thing, distinguishable from other things, which in every
phenomenon of maternity is connected with that element of the phenome-
non which presents a possible space-time continuity with several such
phenomena to which it is related in the same way. That is the element we
call the mother. This “character of being a mother” is conceived as a sort of
badge which is attached to the mother. But it is not attached directly to the
mother but only through the medium of some one of a series of objects

Character Character
of being of being
Mother Child

Character
of
Loving

First Parts
of Facts

Second Parts
of Facts

"1"1

which we may call, in order to give them a general name, “first parts of
facts”. Every one of these objects is joined to another object of a collection
which we call by the general name of “second parts of facts”. We also have a
special thing called ‘the character of being a child”.
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Let us imagine we have two other things called ‘“‘the character of loving”
and “the character of being loved”. Finally, we imagine a quantity of ob-
jects called persons. Now look at the diagram.

It will be seen that person A is connected with half-fact P, which is conju-
gate to half-fact p. Half-fact P is joined to the character of being a mother,
half-fact p to the character of being a child and also to person C. This isa
way of representing that A is mother of C. So, through half-facts R and 7, A
is represented as mother of D; through half-facts S and s, B is represented as
mother of E; and through half-facts U and u,B is represented as mother of F
and G. Moreover, A is connected through half-fact Q with the character of
loving; and the conjugate of Q is ¢, which is connected with the character of
being loved and with person C. Thus, A is represented as loving C; and in
like manner through half-facts T and ¢, B is represented as loving E. Thus,
the diagram exhibits a state of things in which every mother loves one of her
children. Being a mere icon, the diagram can do no more. But every person
is connected with i; and C and E, the persons loved by their mothers, are
connected with j. Against the diagram is written II;Z; and this asserts that
whatever person be taken, persons related to the rest as C and E can be
found. Even with this attachment the diagram does not very distinctly assert
the proposition intended; but it does serve to show very clearly that
inherence, which it is the peculiar function of categorical propositions to
express, is nothing but a special variety of connection [Ms 410, pp. 11-13].

As Peirce seems to admit, this is a rather complicated way to represent the
proposition ‘Every mother loves some child of hers’. Now Peirce’s intention
was, eventually, to construct a simple method of diagraming such proposi-
tions. He was soon to think that EG satisfied this condition. After the
exposition of the Beta part of EG has been given, the existential graph of
this same proposition will be presented, and it will be obvious then that the
EG version is indeed simpler and clearer than the above diagram is (see
section 3 of Chapter 4).

The above quotation from the Grand Logic of 1893 concludes with this
comment by Peirce: “This diagram has been very obviously suggested by the
ideas of Kempe’s Memoir on Mathematical Form”. Peirce apparently had in
mind the use of spots to represent individuals, a device employed by
Kempe. Peirce may also have been referring to his own use of lines as
connections or relations between these spots; but, as was pointed out above,
Kempe did not mean for the lines in his Memoir to be interpreted in this
way. Rather, he meant to represent relations by appropriate spots, since
these relations when considered by the mind are units, and units were to be
represented by spots (Kempe [1897], 454, 457).

Peirce published his interpretation of Kempe’s lines in the January issue
of The Monist for 1897 (3.468, 479n.1), and Kempe replied in The Monist
later that same year (Kempe [1897]). Peirce’s last words on this minor
controversy were never published, but it is worth noting that he did com-
pose a “Reply to Mr. Kempe” in which he points out that “a ‘connexion’,
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‘mode of junction’, or ‘dyadic relation’, is nothing more nor less than a class
of pairs” (Ms 708, p. 2). This means that insofar as Kempe’s lines serve to
distinguish certain pairs from others, they do represent a dyadic relation of
some sort.

2.4 THE FIRST SYSTEM: THE ENTITATIVE GRAPHS

Peirce’s Monist article, just mentioned in the preceding paragraph, was en-
titled “The Logic of Relatives™ (3.456-552). He intended it to be “akind of
popular exposition” of the work that was then being done in the field of the
logic of relatives (3.456). He began by defining the term ‘relation’, and in
order to do this adequately he introduced a system of logic diagrams.!®
Peirce later named this system the ‘entitative graphs’.

The graphs are similar to those used by chemists to represent the consti-
tution of matter. “A chemical atom is quite like a relative [term] in having a
definite number of loose ends or ‘unsaturated bonds’, corresponding to the
blanks of the relative” (3.469). In fact, the entitative graph of the proposi-
tion ‘John gives John to John’ (Fig. 5) corresponds closely to the chemical
diagram for ammonia (Fig. 6):"!

Gohn) H

l
Qohn)—E_sives 3—(Jotn) H—N—H
Fig. § Fig. 6

Peirce pursues the analogy further than it seems useful to carry it here. What
would be useful is to present a brief exposition of the basic conventions of
this system of diagrams. This will now be done.

In the system of entitative graphs, to write a proposition (on whatever
surface is being used for this purpose) is to assert it. Thus, Fig. 7 expresses
the proposition ‘Blue litmus paper is placed in acid’.

Fig. 7 Blue litmus paper is placed in acid.

To write two propositions on the same area is to assert an alternation whose
component parts (alternants) are the two propositions. Thus, Fig. 8 ex-
presses the alternative proposition ‘Either blue litmus paper is placed in acid
or the blue litmus paper will turn red’.

10 3.457 and 468ff. In fact, the diagrams are introduced as a means of achieving the
third grade of clearness. An example of ‘popular exposition’ is this nice description of

the logic of relatives as “nothing but formal logic generalised to the very tip-top”
(3.473).

11 3.469. See also 4.561 n.]1 (written about March, 1908).
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Blue litmus paper is placed in acid.

Fig. 8 The blue litmus paper will turn red.

To encircle a proposition is to negate it. Thus, to express the proposition ‘It
is false that blue litmus paper is placed in acid’ the graph of Fig. 9 is used.

Fig. 9 ( Biue litmus peper is placed inacid. )

To assert a conditional proposition, such as ‘If blue litmus paper is placed in
acid then the blue litmus paper will turn red’, the antecedent is placed
within a circle, and the consequent is written on the sheet itself, as in Fig.
10.

Fig. 10

( Blue litmus paper is placed in acid. j

The blue litmus paper will turn red.

Finally, for the conjunctive proposition ‘Blue litmus paper is placed in acid
and the blue litmus paper will tumn red’, the graph of Fig. 11 is used.

———
Blue litmus paper is placed in acid.
Fig. 11 :
The blue litmus paper will turn red.

So far, of course, the symbolism is adequate only to the representation of
non-relative propositions. That the system is able to do this, however, makes
it something of an improvement on the notation of the 1882 letter to
Mitchell (which could express only relative propositions); for with this
much as a foundation, Peirce is able to provide a means for the expressing of
relative propositions also. But before this can be done it is necessary to
provide the system with a sign of the individual, a sign that can be taken to
represent individual objects. Such a sign is provided by Peirce for the entita-
tive graphs, and it turns out to be the sign he had used for this purpose in
the letter to Mitchell and in the 1892 introduction to the logic of relatives:
the dash — In addition to this Peirce provides an interpretation of the
line, based on its position in the graph, which indicates when the line is to
be read as ‘everything’ and when it is to be read as ‘something’. The rule is
this: a line whose outermost part or extremity (least enclosed part) occurs
unenclosed by circles or within an even number of circles is read ‘all’ or
‘every’; and a line whose outermost part is enclosed by an odd number of
circles is read ‘some’.
With these conventions in mind, let us consider the following graphs:

Fig. 12 Fig. 13 Fig. 14 Fig. 15

In Fig. 12, the outermost part of the line in unenclosed; hence it is read ‘all’
or ‘every’. The form of the proposition, considered apart from the line, is
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that of a conditional (see Fig. 10). Hence Fig. 12 asserts the proposition
‘Everything, if it is good, is ugly’, or, ‘Everything good is ugly’.

In Fig. 13, the outermost part of the line is once (or oddly) enclosed;
according to our conventions, it is to be read ‘some’ or ‘something’. The
form of the graph, considered apart from the line, is that of a conjunctive
proposition (see Fig. 11). Hence Fig. 13 means ‘Something is good and not
ugly’, or, ‘Something good is not ugly’.

Similar analyses of Figs. 14 and 15 show that Fig. 14 means ‘Nothing
good is ugly’ and Fig. 15 means ‘Something good is ugly’.

2.5 THE SECOND SYSTEM: THE EXISTENTIAL GRAPHS

Peirce was not long satisfied with the system of entitative graphs. In fact,
while he was reading the proof sheets of the Monist article in which the
system appeared, a second system suggested itself to him.'? He at once
wrote out a full account of this new system and sent it off to Paul Carus,
the editor of The Monist, hoping to have it published in a later issue. One of
the more delightful accounts of the affair occurs in some papers on pragma-
tism written by Peirce in 1905 or 1906:

The writer described a system of logical graphs, since named “Entitative
Graphs”, in [3.456-552]; but the ink was hardly dry on the sheets . . . when
he discovered the far preferable system, on the whole, of Existential Graphs,
which are merely entitative graphs turned inside out, and sent the gracious
Editor a paper on the subject that could have been squeezed into a single
number by simply excluding everything else. But the Editor feared that so
swift the advances of exact logic seemed to be, that, before the types were
half set up, the second system might be superseded. However, eight years
have elapsed and one jot or one tittle has in no wise passed from the
system,13

It is true that the basic conventions and rules of inference of EG remained
the same over the years.'* As might be expected, there were minor changes
from time to time, regarding such-things as the interpretation of the cut or
enclosure and the symbolization of the pseudograph (this is taken up in
Chapter 3). And there were proposed extensions to the system, such as the
attempts to cover abstractions and modal logic, by means of special symbols

12 Ms 500; Ms Am 806*; Ms 498; Ms 280; Ms 513; and the letter to Woods begun
October 4, 1913, Ms L 477.

13 Ms 280, pp. 21-22. The editor “preferred the old mumpsimus to my sumpsimus”,
Ms L 477.

14 See for example the entry in Peirce’s Logic Notebook on p. 1101, dated June 14,
1898; 4.394-417 (1903); 4.530-572 (1906); and Ms 650 (July and August, 1910).
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including the broken cut in 1903 and by means of the tinctures in 1906.
But these topics are to be discussed in detail in later chapters.

Peirce said that existential graphs were “merely entitative graphs turned
inside out”, by which he meant that “Any entitative graph may be con-
verted into the equivalent existential graph by, first, enclosing each spot
separately and secondly enclosing the whole graph” (Ms 485, p. 1). The
following brief exposition of EG will make this clear.

In EG, as in the system of entitative graphs, to write a proposition is to
assert it. Hence the existential graph of the proposition ‘Blue litmus paper is
placed in acid’, given in Fig. 16, is the same as the entitative graph of this
proposition, given in Fig. 7.

Fig. 16 Blue litmus paper is placed in acid.

Furthermore, in EG as in the system of entitative graphs, to encircle a
proposition is to negate it. Thus the proposition ‘It is false that blue litmus
paper is placed in acid’ is expressed in the graph of Fig. 17, and Fig. 17 is the
same as Fig. 9.

Fig. 17 ( Blue litmus paper is placed in acid. )

At this point the systems begin to diverge. For to write two propositions
together in EG is to assert a conjunction, not an alternation. Fig. 18 is the
EG expression of the conjunctive proposition ‘Blue litmus paper is placed in
acid and the blue litmus paper will turn red’.

Fig. 18 Blue litmus paper is placed in acid.
The blue litmus paper will turn red.
A comparison of Fig. 18 with Fig. 8 shows that the same device which
expresses alternation in entitative graphs, expresses conjunction in EG.

Fig. 19 is the EG expression of the alternative proposition ‘Either blue
litmus paper is placed in acid or the blue litmus paper will turn red’.

( Blue litmus paper js placed in nﬂé
{ The blue litmus paper will turn n:d.j

A comparison of this graph with the graph of Fig. 11 shows that the nota-
tion which expresses conjunction in entitative graphs, expresses alternation
inEG.

Now consider the conditional proposition ‘If blue litmus paper is placed
in acid then the blue litmus paper will turn red’. This is expressed in EG by
the graph of Fig. 20, below. The entitative graph of this same proposition is
given in Fig. 10.

Fig. 19
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Fie. 20 ] Bluc litmus paper is placed in acid. )
1g.
8 ( The bluc litmus paper will turnred. ) )

We turn now to the EG representation of relative propositions. The
device used in EG as the sign of the individual is like that used in the system
of entitative graphs. In both cases Peirce used a line, but in EG he drew it
quite heavily: ===, Peirce called this the ‘line of identity’. The position of
this line also determines how it is to be read (whether by ‘all’ or by ‘some’),
but the rule for EG is the reverse of that used for the entitative graphs: a
line of identity whose outermost part or extremity occurs unenclosed by
circles or within an even number of circles is read ‘some’; and a line whose
outermost part is enclosed by an odd number of circles is read ‘all’ or
‘every’.

Consider the following graphs:

G €D ¢z

Fig. 21 Fig. 22 Fig. 23 Fig. 24

In Fig. 21, the outermost extremity of the line is once (or oddly) enclosed,
so that it is to be read ‘all’ or ‘every’. The form of this graph, considered
apart from the line of identity, is that of the conditional proposition. Hence
Fig. 21 asserts the proposition ‘Everything, if it is good, is ugly’, or ‘Every-
thing good is ugly’.

In Fig. 22, the outermost extremity of the line of identity is unenclosed,
and it must therefore be read ‘some’. The form of the proposition, apart
from the line, is that of a conjunction. Fig. 22 must mean ‘Something is
good and is not ugly’, or ‘Something good is not ugly’.

Similar analyses of Figs. 23 and 24 show that Fig. 23 means ‘Nothing
good is ugly’ and Fig. 24 means ‘Something good is ugly’. Thus Figs. 21-24
give us the four categorical propositions of traditional logic.

Why did Peirce say that EG is ‘far preferable’ to the entitative system?
Because he thought that EG was simpler (Ms L 477) and much easier to use
(Ms 513), and that the system of entitative graphs was unnatural in some of
its basic conventions (Ms 484). The most unnatural feature of the system is
its interpretation of the juxtaposition of two propositions as alternation.
For since the writing down of a proposition asserts it, the writing down of
two propositions naturally suggests asserting them both (as in EG). This
feature renders the analysis of the conditional proposition less satisfactory
in the entitative system than in EG. Finally, the greater simplicity of expres-
sion in EG shows up in connection with relative propositions. These things
should be clear from the table in Appendix 2.
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Peirce did not say just when he began calling his systems by the names
‘entitative’ and ‘existential’. An early name for his second system was ‘posi-
tive logical graphs’. This name occurs as the title of a manuscript, probably
written in 1897, which begins:

The system of logical graphs here described is essentially the same as that
which was sketched by me in a paper in the Monist for January 1897,
except that the interpretation is nearly reversed. I shall distinguish the pre-
sent system as positive, since it proceeds upon the principle that writing a
proposition down asserts it [Ms 488].

As the system is explained, all the essentials of EG appear, such as the
distinctive convention that writing down a number of propositions asserts
them all.

The names ‘entitative’ and ‘existential’ occur in a letter Peirce wrote to
William James on December 18, 1897 (Ms L 224). Peirce was telling James
about his plans for the lectures he was to deliver at the Cambridge Confer-
ences of 1898. ‘Existential’ first occurs in the Logic Notebook on June 9,
1898 (p. 102r), and frequently thereafter.

Why did Peirce choose these names? Because the “fundamental symbol”
of the one system ‘“‘expresses an entitative relation”, and the fundamental
symbol of the other “expresses the relation of existence” (Ms 485, p. 1).
The second is easy enough to understand. In EG, to scribe or write some-
thing is to “aver that such a thing exists” (Ms 513), and is to claim that
something having the character described exists in the universe which the
sheet represents (Ms Am 806*). Not so easy is the meaning of the other
name, which is that “being involves necessarily the truth of the description”

(Ms 513).



ALPHA

The Alpha part of EG is the foundation of the entire system: the Beta part
presupposes and builds upon Alpha, and Gamma presupposes and builds
upon both Alpha and Beta. Alpha is concerned with the relationship
between propositions considered as wholes. That is to say, it is a formu-
lation of the propositional calculus, the logic of truth functions.

The presentation of Alpha will be given in two parts. In the first part 1
explain five conventions which are, in effect, formation rules for the system.
In other words, these conventions amount to instructions in the reading and
writing of the simplest kind of existential graphs. As you will see, there are
only three basic symbols, or types of symbols, in Alpha: the sheet of asser-
tion, the cut, and the graph. In the second part, rules of transformation for
these graphs will be presented. These rules are instructions for operating
with (or upon) the graphs, for transforming graphs already obtained into
new, or other, graphs.

3.1 THE ALPHA CONVENTIONS

We are engaged in constructing a system of expression which will enable us
to diagram, and then examine and experiment with, statements and infer-
ences. The diagrams are to be two-dimensional figures; so we begin by
providing for a two-dimensional surface on which these diagrams are to be
drawn. This surface may in practice be a blackboard, or it may be a sheet of
paper. In any case it will be called the ‘sheet of assertion’ (SA). The writing
(or otherwise placing) of a graph-instance on SA will often be called
‘scribing a graph’, following the practice of Peirce (Ms 450, p. 8 verso). SA
represents for us the ‘universe of discourse’, that is, the domain of objects to
be talked about. Whatever we write upon it can be thought of as making the
representation of the universe more determinate (Ms 455, pp. 2-3). Thus,
suppose we write A

A pear is ripe

on SA; this means that there is a pear in our universe, and it is ripe.
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Of course, the universe of discourse represented by the sheet of assertion
is not necessarily the real universe. For the logician as formal logician is not
interested in whether or not the propositions he analyzes are factually true;
he is, rather, concerned with certain relations that hold between them
whether or not they are in fact true. The study of logic is often facilitated
by analyses of propositions which are factually false, or even absurd. So the
universe is an imaginary or fictitious universe, which becomes more determi-
nate as the graphist (the one who scribes the diagrams on the sheet) pro-
ceeds with his business. In this way we account for the logical distinction
between form and matter: the formal logician is interested only in the form
of (that is, the truth relations between) propositions; the matter of the
propositions (their actual truth or falsity) is not his concern (LN p. 103
r-106 r.).

Now by ‘graph’ (or ‘graph-instance’) we mean any sign which expresses in
a proposition any possible state of the universe. And according to Peirce, SA
is a graph, even if nothing is written on it: “If the sheet be blank, this blank,
whose existence consists in the absence of any scribed graph, is itself a
graph” (4.397). And what does SA express? Whatever is taken for granted
at the outset to be true of the universe of discourse. The sheet thus
functions as a kind of all-purpose axiom, and we will understand the first
convention (below) to be a statement of this axiom. See 7.22 for further
discussion of this topic.

Peirce drew a distinction between the terms ‘graph’ and ‘graph-instance’,
and he frequently illustrated it with the following example: The word ‘the’
will occur perhaps 20 times on an ordinary English page. Each of these
occurrences or instances is a separate occurrence of the same word. “In the
sense in which ‘the’ is one word only, no matter how many times it may
occur, it is a Type”,! that is, a general, a universal; each separate occurrence
or instance of it is, in Peirce’s terminology, a token. So also an instance of a
graph is a token; the graph itself, expressed in the instance, is a type.
Nevertheless, in this book, as in some Peirce papers such as Ms 280, the
word ‘graph’ will frequently be used as an abbreviation of ‘graph-instance’.
Confusion is not likely to arise now that the distinction has been made.

We already have the first two conventions in hand: C1. The sheet of
assertion in all of its parts is a graph. Not all of whatever surface is used for
SA need be regarded as SA; the graphist may need some space (on his
blackboard, say) for explanations or other comments. C2. Whatever is
scribed on the sheet of assertion is asserted to be true of the universe
represented by that sheet.

Our third convention explains what it means to sctibe two or more graphs

1 Ms 498, p. 37. Cf. Ms 490, Ms 450, Ms L 231, and 4.537.
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on SA. Suppose, for example, we have the following two graphs on the
sheet:

A pear is ripe
The pulp of some oranges is red

We will understand this to mean that in our fictitious universe, it is true that
there is a ripe pear, and that the pulp of some oranges is red. It is important
to point out that the order or arrangement of graphs on the sheet has no
significance. C3. Graphs scribed on different parts of the sheet of assertion
are all asserted to be true (4.398). This makes juxtaposition the sign of
conjunction. In another place Peirce puts it this way: “If different graphs
are scribed on entirely different parts of the sheet of assertion, each shail
have the same significance as if the other were not there” (Ms 450, p. 10).

By the term ‘entire graph’ is meant everything that is scribed on SA. A
‘partial graph’ is any graph scribed in the presence of, or along with, other
graphs (Ms 450, p. 10). Since SA is a graph, the term ‘total graph’ is used to
mean the entire graph together with SA itself.

It might be well to call attention here to a feature which is of importance
later. To scribe

A pear is ripe
is to assert that something exists which is a-pear and 'is'ripe. And to scribe
The pulp of some oranges is red

is to assert that there is something which is red and is at the same time the
pulp of some orange. In this system propositions asserted (or scribed on SA)
have existential import: they imply the existence of whatever they
describe—but existence, of course, only in the particular universe of dis-
course represented by the sheet.

C4 concerns the way in which EG is to express the conditional propo-
sition. In a draft of one of the Lowell Lectures of 1903 Peirce used this
diagram to distinguish and identify the parts of such a proposition, which he
there called a ‘consequence’ (Ms 455, p. 6 verso):

Consequence
- IfPistrue then Q is true
d C

The kind of conditional in which Peirce was primarily interested is the
truth-functional conditional, the material implication, the ‘conditional de
inesse’. The essential point is that this conditional does not imply that there
is any real connection of any kind between the state of things supposed in
the antecedent and the state of things conditionally asserted in the conse-
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quent. It asserts simply that either the antecedent is false or the consequent
is true; “it limits itself’ to saying ‘If you should find that P is true, then you
may know that Q is true’, never mind the why or wherefore” (Ms 455, p. 9).
It follows from this that the only case in which this conditional proposition
is false is when the antecedent is true while the consequent is false.

How shall we diagram ‘If P then Q’? In order to assert it we must place it
on SA. But since ‘If P then Q’ asserts neither P nor Q, we must be careful
not to scribe them on SA.2 We get what we want by means of what Peirce
called a “scroll” — “two closed lines one inside the other” (Ms 450, p. 14),

like this:

In one place Peirce gave the following instructions for drawing the scroll in

four steps:?
First Second Third

Fourth

You are to understand the ovals or lines of the scroll to be different from
ordinary lines. We will “make believe” (Ms 455, p. 10) that they are cuts
through the surface of SA, and that what is placed inside such a cut is
severed from, or cut off from, the sheet itself (see Appendix 5, ‘verso’).
Suppose now that we place the graph Q in the innermost circle, and the
graph P in the outermost compartment, obtaining this graph:

©

Note that we have succeeded in diagraming both P and Q, yet not on the
surface of SA itself. And we agree to express in this way the conditional
proposition de inesse: If P then Q. To express the proposition ‘If some
oranges have red pulp then naturalness is the last perfection of style’, we
scribe:

2 Here is a place where the analysis given by Peirce’s first system of graphs, the
entitative graphs, is less satisfactory than that afforded by EG. For in the earlier system
the consequent of the conditional proposition is itself placed on the unenclosed sheet.
3 Ms 693, p. 292. Peirce was left-handed. The reverse direction might seem more
natural to a right-handed person.
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Some oranges have red pulp

Naturalness is the last perfection of style

Here then is C4: The scroll is the sign of a conditional proposition de inesse
(that is, of material implication) (Ms 450, p. 14).

It is important to note that the shape or size of the scroll has no signifi-
cance. Thus, ‘If P then Q’ could just as well be diagramed in any of the

following ways:

The essential feature of the scroll is that it consists of two closed lines one
inside the other, and that we agree to place the antecedent in the outer
compartment and the consequent in the inner one. We shall occasionally
read this kind of graph P scrolls Q.

Each of the lines that make up the scroll is called a ‘cut’;* and the space
within a cut is called its ‘close’ (4.437) or ‘area’ (4.556). A cut taken
together with its area and whatever is scribed on its area is called an ‘en-
closure’ (4.399, 414(5), 437). A cut per se—the “self-returning finely drawn
line” (4.414)—is not a graph, but an enclosure is.* The area on which a cut
(or any graph) is made (or scribed) is called the ‘place’ of the cut (or graph).
A cut that is not itself enclosed within another cut lies on SA; but no point
within it lies on SA, since the cut separates its area from the sheet. Yet such
an enclosure is said to lie on SA. The inner cut of a scroll may be called the
‘9loop’, and its area the ‘inner’ or ‘second’ close or area (4.437). The ‘outer’
or ‘first’ close or area of a scroll is the area outside the loop but inside the
outer cut. When the word ‘close’ is used of a scroll without qualification, it
signifies the entire contents of the scroll, both the inner and outer areas.

Outer cut

It wasindicated in Chapter 2 that negation is expressed in EG by enclosing
whatever we wish to deny in a single cut. At times, Peirce seemed to derive
this convention from the nature of the conditional de inesse. For, as just

remarked, the graph

4 In some places Peirce used the term ‘sep’, from saepes, a fence, 4.435.
5 4.399. This consideration is important for a proper understanding of the rules of
erasure and deiteration, which are explained in section 3.2 below.
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asserts that either the antecedent P is false, or the consequent Q is true; and
“it all but follows that if the latter alternative be suppressed by scribing
nothing but the antecedent, which may be any proposition, in an oval, that
antecedent is thereby denied”.® At other times his reasoning is based on the
insight that a conditional with a false consequent expresses the denial of its
antecedent.”

The filling up of any entire area with whatever writing material (ink, chalk,
etc.) may be used shall be termed obliterating that area, and shall be under-
stood to be an expression of the pseudograph on that area.

Corollary. Since an obliterated area may be made indefinitely small, a
single cut will have the effect of denying the entire graph in its area. For to
say that if a given proposition is true, everything is true, is equivalent to
denying that proposition.8

Peirce sometimes drew a cut entirely filled in, or blackened—

and used this ‘blot’ to symbolize the pseudograph.® At other times he
simply wrote out an example of a proposition which is always false: ‘Every
proposition is true’, or ‘No proposition is false’ (see 4.452). But he also
employed the empty cut—i.e., the cut with a blank area—for this purpose
(4.467). And if this is done, it follows once more that a cut precisely denies
its contents. To see this, consider what it takes to diagram the proposition
‘It is false that it rains’. This is accomplished by the following scroll

It raing

6 4.564.InMs 650, p. 20, Peirce says “Before 1 had the concept of a cut, I had that of
two cuts, which I drew at one continuous movement as shown™:

7 For more on this method of expressing negation see Appendix 1, item
G-1885-3, (6).

8 4.402. Cf. 4.455. One disclaimer to this piece of reasoning was published in a
footnote to 4.564 (on p. 452); it is from “Copy T of Ms S 30, which was an early
draft of the October 1906 article “Prolegomena to an Apology for Pragmaticism”, not
a manuscript “‘designed to follow” Prolegomena, as the editors of CP state (on page
453). In the final draft of Prolegomena, Peirce reinstated his earlier view (4.567), and
he continued afterwards to support the interpretation given in C5. See, for example,
4.617 (1908), Ms 650 (July and August 1910), and Ms L477 (November 1913).

9 Ms 450 (pp. 23-24) and 4.455. He called this symbol the ‘pseudograph’ because,
strictly speaking, it is not a graph; for, being absurd, it is an expression of an impossible
state of things, whereas a graph is the propositional expression of a possible state of the
universe. He called it ‘the’ pseudograph because all such propositions (all absurd pro-
positions) are equivalent. Ms 450, p. 22; 4.395. In one account Peirce gave the pseudo-
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since we have here a conditional with a false consequent (the empty cut is
the pseudograph). Now (and we anticipate part of our later exposition) it is
a basic rule of transformation that two cuts, one within the other but with
nothing scribed in the outer area, can be drawn on any area or removed
from any area where it occurs. Hence the above graph is equivalent to the

following graph: _

And hence the cut denies its contents.

The above is summarized in CS: The empty cut is the pseudograph; and
the cut precisely denies its contents.

Cuts cannot intersect one another in EG, but (as the scroll illustrates) they
may be made within other cuts. This produces what Peirce called ‘nests’ of
cuts. A nice definition of this term occurs in an unpublished manuscript
(you should recall that the area of a cut is the space it encloses, while the
place of a cut or graph is the area on which it is made or scribed):

If there be a collection, i.e., a definite, and individual plural of cuts, of
which one is placed in the sheet of assertion, and another encloses no cut at
all, while every other cut of the series has the area of another cut of this
collection for its place, and has its area for the place of still a third cut of
this collection, then I call that collection a nest, and the areas of its dif-
ferent cuts its successive areas, and I number them ordinally from the sheet
of assertion as origin, or zero, with an increase of unity for each passage across
a cut of the nest inwards that one can imagine some insect to make if it
never passes out of an aréa that it has once entered. For example, in Fig. 1
there are five nests as follows:

Fig. 1

1. One of S areas, or 4 cuts; A-B-C-E-F,

2. A-B-C-D,
3.} Three of 4 areas or 3 cuts each; A-B-H-1,

4, A-B-H-J,

5.  One of 3 areas, or 2 cuts; A-B-G.'°

graph the distinction of being the only graph which cannot be erased from SA,
4.415(2).

10 Ms 650. In Ms 693, p. 292, Peirce writes “A nest is any series of cuts each
enclosing the next one”.
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An area is said to be oddly enclosed if it is enclosed by an odd number of
cuts; it is evenly enclosed if it is enclosed by an even number of cuts or by
no cuts at all. This terminology applies also to graphs scribed on such areas.
Thus, in Fig. 1, the letters A, C, F, G, and H are evenly enclosed; the others
are oddly enclosed. Not only the letters, but any part of the graph which is
itself a graph can be described as evenly or oddly enclosed. For example,
(® and © are oddly enclosed, and the scroll@is evenly enclosed.

It is convenient to inject some order into the areas of graphs. For any
graph P, let {{P}" denote the place of P. And let the relation symbol 2 be
defined as follows: { B} is enclosed by every cut that encloses {A}if and only
if {A} 2{B}. The sign 2 may be read ‘contains’.!* Examination of Fig. 1 in
the light of this definition shows that {A} (namely, SA) contains every area
in the graph, and {B} contains every area except {A}. It is also clear that the
relation holds only between areas which belong to the same nest; for exam-
ple, neither {E} 2 {G} nor {G} 2 {E} is true.!?

According to C2 and C5, whatever is scribed on SA is asserted, and
whatever is enclosed in a single cut is denied. Fig. 2

’ ® @)

Fig. 2 Fig. 3 Fig. 4

therefore means ‘P is true’, and Fig. 3 means ‘P is false’. In Fig. 4 the graph
P is enclosed in two cuts, and must therefore mean ‘It is false that P is
false’—that is, ‘P is true’. Further examples might suggest that whatever is
enclosed in even cuts is asserted, while whatever is enclosed in odd cuts is
denied. But this is too easy; it would mean that Fig. 1 asserts A, C, and G
(among other things), and denies B, D, and I (etc.). Peirce had something
else in mind.

11 The idea for the present treatment is due to Thomas Lee Schafter, a former
student of mine (Schafter, 1968). The relation 2 gives a partial ordering of the areas of
existential graphs. This means that for arbitrary graphs P, Q, and R, the following
propositions hold: ’

@) {P} 2 {P}. (Containment is reflexive.)

®) If {P} 2 {Q} and {Q} 2 {P}, then {P} = {Q}, i.e., P and Q are scribed on the
same area. (Containment is antisymmetric.)

©) If {P} 2{Q}and {Q} 2 {R}, then {P} 2 {R}. (Containment is transitive.)

The reader may verify these for himself. Peirce used the notion of areas “immediately
or mediately contained within” other areas when stating the rules of iteration and
deiteration in Ms 490, but he did not there treat containment as a reflexive relation.

12 If, on the contrary, for arbitrary areas {P} and {Q}, either {P} 2{Q} or {Q} 2
{P}, in addition to (a), (b), and (c) of note 11 above, the areas of graphs would
constitute an ordered system.
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Consider Fig. 5. According to C4 this means ‘If P then Q’.

Fig. 5

Notice that we do not read it: ‘Q is true and P is false’, even though Q is
evenly enclosed and P is oddly enclosed. Rather, the proposition Q in the
inner close is regarded as posterior to or consequent upon the proposition P
in the outer close. In other words, we read the graph from the outside (or
least enclosed part) and we proceed inwardly, a method to which Peirce
gave the name ‘endoporeutic’.!?

By applying this endoporeutic method but with our attention focused on
CS, we find a different but equivalent reading of Fig. 5. We begin with the
outer cut, which is to be read, ‘It is false that ...."” But what is being
denied? Why, whatever is contained in the cut—in this case, it is the graph
of Fig. 6. Now Fig. 6, according to C3 and CS, may be read in this way: P is
true and Q is false’.

Fig. 6 P @
Fig. 5 is the precise denial of this, and must therefore mean: ‘It is false that:
P is true and Q is false’. And this is the same as ‘If P then Q.

There is a third way to read Fig. 5. The truth-fuhctional conditional, we
said earlier, does not imply that there is any real connection between the
state of things supposed in the antecedent and the state of things condi-
tionally asserted in the consequent; the conditional asserts simply that
either the antecedent is false or the consequent is true. Thus Fig. 5 may be
read ‘Either P is false or Q is true’.

Consider now Fig. 7. How is this to be read? You can answer this by
comparing Fig. 7 with Fig. S.

Fig.7

The only difference is that where Fig. S has the graph of P, Fig. 7 has the
graph of not-P. Since Fig. 5 is read ‘If P then Q’, Fig. 7 can be read ‘If not-
P then Q. Again, since Fig. 5 may be read ‘It is false, that P is true and Q is

13 “The interpretation of existential graphs is endoporeutic, that is proceeds
inwardly; so that a nest sucks the meaning from without inwards unto its centre, as a
sponge absorbs water. . . . If anybody were to find fault with the system for expressing
truth endoporeutically, —as if we opened a closet to whisper it in, instead of speaking
out and ever further out, I should be disposed to admit that it is a poetical fauit. But I
had difficult enough conditions to fulfil in constructing the system, without consider-
ing purely esthetical points in its essential features” (Ms 650, pp. 18-19). In Ms L 477
(dated 1913) Peirce uses the term ‘endogenous’ for the method of interpretation which
begins from the outside and proceeds inward. An ‘exogenous’ interpretation would
begin in the inside and proceed outward.
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false’, Fig. 7 can be read ‘It is false, that P is false and Q is false’. Finally,
since Fig. 5 may be read ‘Either P is false or Q is true’, Fig. 7 can be read
‘Either P is true or Q is true’. These interpretations are summarized and
related to other notations in Appendix 2.

How shall we read Fig. 1?7 The basic structure of the entire graph is that
of a conjunction: A is true and the enclosure is true. But the enclosure can
be read in several different (though equivalent) ways. Perhaps the simplest
reading is to view it as a scroll whose antecedent is the conjunction (because
juxtaposed on the same area) of B, @ and . The graph as a whole
can then be read as follows: A is true; and if B is true, G is false, and at least
one of H, not-I, and not-J is false, then C is true, D is false, and E implies F
(see 7.21).

3.2 THE ALPHA RULES OF TRANSFORMATION

The object of reasoning is to find out, from the consideration of what we
already know, something else which we do not know. Consequently, reason-
ing is good if it be such as to give a true conclusion from true premisses, and
not otherwise [5.365].

This was written in 1877, and repeated 26 years later in an exposition of EG
(4.476ff). Since the purpose of EG is to analyze and therefore represent
reasoning (more on this in Chapter 7) the system must be provided with
rules of inference of some kind; and if these rules are to represent good
reasoning, they must be valid—i.e., they must be such as never to transform
a true premiss into a false conclusion. A few remarks about this will be
made as we present the rules, but a full scale proof of the validity of the
rules and of the consistency of the system is reserved for Appendix 4. Even
for present purposes, however, it is convenient to have the method of truth-
table analysis available. Let 1 and 2 represent the truth-values truth and
falsehood, respectively. By ‘value of an area’ is meant the value of the
conjunction (juxtaposition) of all the graphs scribed on that area. And (by
C3) this value is calculated by the rule that a conjunction has the value 1 if
each conjunct has the value 1. This means that a single 2 on an area is
sufficient to give the area the value 2. We indicate the value of an area by
placing a 1 or a 2 inside square brackets on that area. The value of an
enclosure, indicated by a 1 or a 2 placed just outside its cut, is 2 if the value
of its area is 1, and it is 1 if the value of its area is 2 (C5). To illustrate the
procedure, we show that ‘P scrolls Q* has the value 2 when P=1and Q = 2:
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First step: calculate the value of the 2nd
area of the nest.

Second step: calculate the value of the

R1. The rule of erasure. Any evenly enclosed graph may be erased.
Suppose that the graph of Fig. 1 below is scribed on SA. This graph means
‘P is true, and Q scrolls R’.

Fig. 1 Fig. 2 Fig. 3 Fig. 4

According to R1, this entire graph can be removed, leaving the blank SA.
The result of this transformation can hardly result in a false assertion; for to
assert nothing (or to assert the blank SA, which by C1 has the value 1) is
not to assert something false (Ms 650, p. 13). R1 permits the transformation
of Fig. 1 into Fig. 2 and also into Fig. 3, for if a conjunction is true, then
each of its conjuncts is true. The rule of erasure also justifies the transforma-
tion of Fig. 2 into Fig. 4, for this transformation consists in the erasure of
R, which is twice (and therefore evenly) enclosed in Fig. 2. But what does
Fig. 4 mean? And will it be true if Fig. 2 is true?

Compare Fig. 4 with Fig. 2. Fig. 2 means ‘If Q is true then R is true’. But,
as was pointed out earlier, this graph can also be read ‘It is false that Q is
true and (R) is true’. By analogy, therefore, Fig. 4 must mean: ‘It is false
that Q is true and (O is true’. But () is the pseudograph, and has
(always) the value false, or 2; hence the value of the first area of Fig. 4 is 2,
and the value of the entire graph is 1, or true. Fig. 4 then, is true regardless
of the value of Q, and regardless of the value of Fig. 2; and it follows from
this (trivially) that the inference of Fig. 4 from Fig. 2 by means of R1 is
valid.

R2. The rule of insertion. Any graph may be scribed on any oddly enclosed
area. Consider Fig. 5. According to R2, Fig. 5 can be derived from Fig. 2;

Fig. 2 Fig. §
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for the transformation of Fig. 2 into Fig. 5 consists in the inserting of the
graph S into an area once (and therefore oddly) enclosed. Suppose now that
Fig. 2 has the value 1;then the first area of the nest is the conjunction of Q
and (&) — and must have the value 2. The addition of S to that first area
of Fig. 2 cannot change the value of that area from 2 to 1, regardless of the
value of S. Hence Fig. 5 must be true.

R3. The rule of iteration. If a graph P occurs on SA or in a nest of cuts, it
may be scribed on any area not part of P, which is contained by { P}.'*
That is to say, any graph which occurs on some area may be scribed again
on that area, or on any area enclosed by additional cuts. In Fig. 1 the graph
P occurs on SA. According to R3, P can be scribed again on SA, as in

Fig. 1 Fig. 6 Fig. 7

Figs. 6 and 7; on the once enclosed area as in Fig. 8; on the twice enclosed
area as in Fig. 9; or on both enclosed areas as in Fig. 10.

Fig. 8 Fig. 9 Fig. 10

In Fig. 1, Q occurs once enclosed. Hence, by iteration, Q can be scribed
again on the same area, as in Fig. 11; or on the twice enclosed area as in

Fig. 11 Fig. 12 Fig. 13

Fig. 12. But this rule does not justify the scribing of Q on SA itself, since SA
is not contained by {Q}. In Fig. 1 the graph R occurs twice enclosed. By R3
it can be scribed again on the same area, as in Fig. 13.

Notice that the transformations of Fig. 1 into Fig. 8 and into Fig. 11
could be justified by an appeal to R2, the rule of insertion; for they both
consist in scribing a graph on an oddly enclosed area. The distinctive thing
about the rule of iteration is that it permits the insertion of a graph into an
evenly enclosed area when the conditions for its use are satisfied. Peirce
likened the use of this rule to

14  Keep in mind that {P} denotes the place of P. It might be useful at this time to
reread (a) and (c) of note 11, as well as the definition of D in the text over the
footnote, Peirce stated this rule in several different ways. One of the simplest state-
ments, which unfortunately does not make it clear that a graph may be iterated on the
area of its original occurrence, is in Ms 650: “If you have a right to scribe a graph on
the place of a cut, you have a right to scribe it on its area; whence it follows that any
graph that is scribed on any area may be iterated, or repeated, on any higher-numbered
area of the same nest”.
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...a march to a band of music, where every other step only is regulated by
the arsis or beat of the music, while the alternate steps go on of themselves.
For it is only the iteration into an evenly-enclosed area that depends upon
the outer occurrence of the iterated graph, the iteration into an oddly
enclosed area being justified by your right to insert whatever graph you
please into such an area, without being strengthened or confirmed in the
least by the previous occurrence of the graph on an evenly-enclosed area [Ms
650].

The clause ‘not part of P’ in R3 is intended to prevent such transforma-
tions as that from Fig. 14 into Fig. 15, since forP =1,

Fig. 14 Fig. 15

Fig. 14 is true but Fig. 15 is false. Fig. 15, in fact, is a contradiction and is
false for all values of P. The clause blocks this inference by making clear
that the iteration of (® onto its own area is illegitimate.’

R4. The rule of deiteration. Any graph whose occurrence could be the
result of iteration may be erased. It is not necessary that the graph in
question actually be the result of R3, but it is necessary that the conditions
for this are in fact satisfied. Hence, in order to erase any graph by R4, there
must be at least two instances of that graph in a given nest of cuts; and it is
the more-times-enclosed instance that may be erased (if the instances occur
on the same area, all but one of them may be erased by R4). For example,
R4 justifies the transformation of Fig. 11 into Fig. 1, since this trarisforma-
tion consists in the erasure of one occurrence of Q from an area containing
two occurrences of Q. By R4, Fig. 8 can be transformed into Fig. 1, since
this transformation consists in the erasure of the graph P from an area once
enclosed, but it leaves another occurrence of P outside this area, that is,
enclosed by fewer cuts than one. A valid application of deiteration always
leaves another instance of the graph which was removed, and it leaves that
other instance either on the same area as that occupied by the removed
instance or on an area enclosed by fewer cuts than that occupied by the
removed instance.

15 E. James Crombie trapped this fallacy, brought it to my attention, and helped me
tame it. The particular illustration of it in Fig. 14 was suggested to me by my student
David Stephenson. The spurious use of R3 which leads from Fig. 14 to Fig. 15 will also
lead from any theorem to a contradiction of the form of Fig. 15, and the use of RS
will make the contradiction even more apparent. To see this, substitute any theorem,
say @ for P in Fig. 14, and perform the spurious inference.
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Notice that although the transformations of Fig. 13 into Fig. 1, of Fig. 12
into Fig. 1, and of Fig. 9 into Fig. 1 could be justified by an appeal to R4,
this is not necessary. Since they all consist in the erasing of a graph from an
evenly enclosed area, they can be justified by R1, the rule of erasure. The
distinctive thing about the rule of deiteration is that it permits the erasure
of a graph that is oddly enclosed, when the conditions for its use are
satisfied.

Both R3 and R4 are truth-preserving. Consider for example the transfor-
mation of Fig. 1 into Fig. 9 by iteration. Suppose the premiss, Fig. 1, has the

Fig. 1 Fig. 8 Fig. 9

value 1. Then both P and “Q scrolls R’ have the value 1, and the first area of
the nest in Fig. 1 has the value 2.

This means that either Q = 2 or ® = 2. Of course, if Q = 2, the first area
of the nest in Fig. 9 has the value 2, from which it follows that Fig. 9 has
the value 1. So suppose that Q = 1. Now the addition of P to the second
area of the nest of Fig. 1 changes things only if P = 2, for this would give the
value 1 to (@_R), and the scroll in Fig. 9 would take the value 2. But the
assumption was that P = 1; hence, if Fig. 1 is true, so is Fig. 9, and the
inference in question is valid. A similar chain of reasoning will show that the
inference from Fig. 8 to Fig. 1 by deiteration is also valid. For if Fig. 8, the
premiss, is presumed to have the value 1, then P = 1, and the first area of the
nest in Fig. 8 must have the value 2 independently of P—and this guarantees
that the first area of the nest in Fig. 1 has the value 2, so that Fig. 1 as a
whole must be true.

In order to state RS we need to define a new term. A scroll with nothing
on its first area (its outer close or area) is called a double cut. R5.The rule
of the double cut. The double cut may be inserted around or removed
(where it occurs) from any graph on any area. Since any part of SA is a
graph (according to C1), RS enables us to scribe a double cut anywhere on
the blank SA. In addition, this rule permits the transformations of Fig. 1
into Figs. 16,17, and 18,

- @D -
Fig. 1 Fig. 16 Fig. 17 Fig. 18

and it permits the reverse transformations back into Fig. 1. All four of these
graphs are equivalent. It is left to the reader to perform the truth-value
analyses which show these transformations to be valid.
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For convenience of reference the EG conventions and rules of transfor-
mation are collected together in Appendix 3. Here, for purposes of illustra-
tion, we present two proofs in EG .

3.3 FURTHER ILLUSTRATIONS

(1) The rule of modus ponens. This rule of inference may be stated as
follows: From P and ‘If P then Q” we may infer Q. In terms of the graphs,
we must justify the transformation of Fig. 1 into Fig. 2:

B

Fig. 1 Fig. 2

There are in fact two ways to do this. One way is to perform the transfor-
mations on the premisses themselves, so that when the inference is complet-
ed only the conclusion remains on SA. The other, and more instructive way,
is to perform the actual transformations on iterated instances of the pre-
misses, so that when the inference is completed the steps leading to the
conclusion remain on SA as a kind of record. The first method is preferred
by students writing examinations. We employ the second method here. The
steps in our proofs are numbered, and to the right of each step we give the
justification for it.

1. ¢ Premiss.
2. From 1 by R3.

2, 1 by R4: deiterating the once enclosed

3. P of step 2, since P occurs unenclosed in

step 1.

4. q 3,by RS,

In future proofs we will not bother to write out iterations which are as
obvious as that of step 2 above, leaving it to the reader to supply them
whenever he considers it necessary for clarity. Such an abbreviated proof of
modus ponens, for example, might consist of steps 1, 3, and 4.

(2) The self-distributive law of material implication. This is stated in
Principia notation as follows:

[PD[QDR]] D [[PDQ] D [PDR]].InEG it looks like this:
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1, by R2
2, by R3
3, byRS
4, byRS.
5, by R3
6, by RS

RS.

wjsjulelal
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In one manuscript Peirce says that the Beta part of EG is distinctive in that
it takes account of individual identity and individual existence (Ms 462,
pp- 8, 34). In another place he says that it is by means of the Beta part that
we are able to express categorical propositions (Ms 450, p. 20). Beta is, in
fact, a treatment of the functional or predicate calculus, the logic of quanti-
fication.

The Beta conventions introduce two new symbols: the line of identity
and the spots. The numbering of the conventions continues that of Chapter 3.

4.1 THE BETA CONVENTIONS

The first Beta convention (the sixth in our list) provides a way for us to
denote a single individual object; it is done by scribing a heavy dot or a
heavy line on SA, like this @ or this — Peirce argued that since the universe
of discourse (represented by SA) is a collection of individuals, any decidedly
marked point of the sheet should be taken to stand for a single individual
existing in that universe. Hence, ==will mean ‘something exists’ (Ms 455,
p. 21). Furthermore, since the ‘fact’ that something exists is taken for granted
at the outset (/bid.), since this fact is one of the “indemonstrable implica-
tions” of the blank SA (4.567, and see the discussion of C3 in Chapter 3),
Peirce treated the unattached line (or the dot) as an axiom and permitted it
to be scribed on SA (4.417, 567). We capture all of this in C6: The scribing
of a heavy dot or unattached line on the sheet of assertion denotes the
existence of a single, individual (but otherwise undesignated) object in the
universe of discourse. And it is always permitted to scribe such a dot or line
on the sheet. So far, EG appears to be a two-axiom system: there is the
blank SA of C1, and the unattached heavy line of C6. In Appendix 4 it is
shown that no more axioms are needed.

Suppose now that two heavy lines were placed on the sheet: .How
are we to read this? Are we to say that there are two different individuals in
the universe, or do the two lines refer to the same individual? C3 stated
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that graphs scribed on different parts of SA are all asserted to be true; hence
we must read this graph ‘Something exists and something exists’. But our
discussion of C3 also pointed out that graphs scribed on different parts of
the sheet are to have the same meaning as if each stood alone; hence, in the
absence of further information, we must treat the two ‘somethings’ as dif-
ferent. This will mean, in practice, that a graph refers to as many individuals
as it contains disconnected heavy lines (Ms 481).
If we scribe

~=bhas red pulp
on SA we mean to assert ‘There exists something in the universe which has
red pulp’. If we scribe

=== has red pulp

=i g0 Orange
we mean to assert that something is an orange and that something has red
pulp; but nothing is said about the relation between these two somethings.
In order to express that the very same thing is an orange and has red pulp,
the two lines are joined as in the following graph:

is an orange

has red pulp
As Peirce puts it, we simply agree that the heavily marked line, all of whose
points are ipso facto heavily marked and therefore denote individuals, shall
be a graph asserting the identity of all the individuals denoted by its points
(Ms 455, p. 23). Here is C7: A heavy line, called a line of identity, shall be a
graph asserting the numerical identity of the individuals denoted by its two
extremities.

In most of the graphs we have used so far there occur English words as
well as special graphical symbols. Thus, to express the proposition ‘There is
an orange which has red pulp’ we scribed this graph:

is an orange

has red pulp
Here the English words ‘is an orange’ and ‘has red pulp’ have not been
reduced to symbols; these ‘unanalyzed’ parts of the graph, the English
phrases, are called ‘spots’ or ‘rhemata’ (see 2.3 above and 7.121 below). The
places about each spot to which a line of identity can be attached are called
the ‘hooks’ of the spot. In the above graph each spot has one hook; but we
will in the following often be concerned with spots having more than one
hook. Thus the following graph requires two hooks:

= is an opponent of ==
The next graph has two spots, each of which has two hooks:

o= i3 betwoent == and =
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It is possible to scribe the same graph with only one spot which takes three
hooks, as follows:

7
== i§ between
S

Regardless of the number of its hooks, every spot that is scribed must be
provided with a line of identity (or a heavy dot) at each hook (4.474);
otherwise the spot is not a graph (4.441, 560). This will be discussed in
Chapter 7 below, but an important result may be mentioned in passing:
formulas with free individual variables cannot be expressed in EG. It is
interesting that in one early exposition of the graphs, Ms 493 (“Principle
5*), Peirce did present a means for showing, should it be necessary, that “a
complete assertion is not intended™. The later and definitive expositions of
EG, however, permit no graph to have an empty hook.

Suppose now we allow the line of identity to branch, as in the following

graphs:
is a bird
€=
mischievous

This means that there is a black bird which is mischievous. We could con-
sider the heavy lines as a single line of identity with three extremities; but
Peirce usually preferred to consider the figure as three lines of identity
which have a point in common, namely, the point marked by the arrow. And
the totality of all the lines of identity that join one another he called a ‘liga-
ture’. I prefer the former terminology, but both will occur in the book. The
point in the above graph from which the three lines of identity can be taken
to proceed, has the force of the conjunction ‘and’ (Ms 455, p. 24); hence
the graph could be read ‘There is something which is a bird and is black and
is mischievous’.

There is practically no limit to the number of ways a line of identity can
be made to branch. Consider, for example, this description of Aristotle:

r.k.m Jilw

=

E. S conquers the world
is a disciple of 3 o122 phib
an opponent of Church Fatbers >

‘There is a Stagirite who teaches a Macedonian conqueror of the world and
who is at once a disciple and an opponent of a philosopher admired by
Fathers of the Church’ (Ms 450, p. 18).

You are now prepared for C8: A branching line of identity with n num-
ber of branches will be used to express the identity of the n individuals
denoted by its n extremities.
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It remains to explain how the line of identity is to be used and inter-
preted when it occurs in graphs involving cuts. Fig. 1 means ‘There exists

—y

Fig. 1 Fig. 2

something which is ugly’, or ‘Something is ugly’. If we place a cut
around this graph we obtain Fig. 2. Since by C5 the cut precisely denies
its contents, this graph means ‘It is false that something is ugly’, which is to
say ‘Nothing is ugly’.

Note that according to this method of interpretation, a line of identity on
SA stands for some individual object; but a line of identity once enclosed
can be read as standing for every or any individual of the kind mentioned.
Words like ‘some’ and ‘any’, or ‘something’ and ‘anything’, tell us “how to
proceed in order to experience the object intended™; and such words Peirce
called ‘selective’ pronouns (Ms 484, § 3). He gives the following explana-
tion:

The words some and any conceive an individual to be selected. Some means
that a suitable individual is to be chosen by the speaker, or person interested
in sustaining the truth of the proposition, while gny means that the choice
of the individual may be left to the listener, or to a person who might be
hostile or sceptical to the proposition [Ms 503, p. 3].

Consider now Fig. 3. Here we have a line of identity crossing a cut.

How is this to be read? Notice first that there are, in a sense, two lines of
identity: one outside the cut, and one inside the cut.! These two
lines have a point in common (the point on the cut) so that they form a
ligature; hence, by C8, they must be taken to denote the same individual. If
the line were broken,-as in Fig. 4, it would be easy to interpret. According

-G

to C3, Fig. 4 means ‘Something exists and it is false that something is ugly’.
Now the essential thing about Fig. 3 is that it identifies these two some-

1 Except for a brief period in the spring of 1906 (4.579; see Chapter 6 below, section 1),
Peirce allowed no graph to rest partly on one area and partly on another (4.405407,
414(6), 416(11); Ms L 231). Nevertheless, it is quite natural and inconsequential to
speak of a line of identity as crossing a cut, as Peirce did himself. In some cases he was
careful to state that the part of the line that crosses is not a graph (4.449, especially
the last sentence; 4.474(4), 4.561); but in others he did not bother to explain
(4.458,459).
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things; so Fig. 3 means ‘Something exists and it is false that this same some-
thing is ugly’. That is, ‘Something is not ugly’.
Place a cut around the graph of Fig. 3, and you get Fig. 5

which reads: ‘It is false that something is not ugly’, that is, ‘Everything is
ugly’, or ‘If anything is, it is ugly’ (cf. Ms 481, Fig. 34).

We have just said, in connection with Figs. 1 and 2, that according to our
method of interpretation a line of identity on SA represents some individual
object; and a line of identity once enclosed represents every individual in
the universe. Does this ‘rule of interpretation’ hold true for Figs. 3 and 5
also? The answer to this is not immediate; for although Fig. 3 is read
‘some-thing is not ugly’, only part of that line of identity lies on the sheet of
assertion itself. And although Fig. 5 is read ‘every-thing is ugly’, only part of
that line of identity is once enclosed.

The ‘principle secret’ of interpretation (as Peirce phrased it in Ms 454,
p. 18) is this: we are to consider a line of identity to be as much enclosed as
its least enclosed (that is, its outermost) part (cf. 4.387); and if this part is
on SA it denotes something suitably chosen, but if its outermost part is
once enclosed it denotes anything you please (cf. 4.458). Thus, since the
outermost part of the ligature in Fig. 3 lies on SA, the ligature refers to
some individual suitably chosen; and since the outermost part of the ligature
in Fig. 5 is once enclosed, that ligature refers to any individual in the
universe.

We extend this principle at once to read as follows: A line of identity is as
much enclosed as its least enclosed part; and if this outermost part is evenly
enclosed it refers to a suitably chosen individual, while if this outermost
part is oddly enclosed the line refers to any individual taken at pleasure.
Now in logic systems generally, a symbol which denotes a suitably chosen
individual, an existing individual, is called an existential quantifier; and a
symbol which refers to any individual at all, taken arbitrarily from the
universe of discourse, is called a .universal quantifier. The evenly enclosed
line, then, is an existential quantifier, and the oddly enclosed line is a
universal quantifier. One word of caution: as we have already seen, graphs
containing lines enclosed by cuts can be read in more than one way; the
principle given here supposes that the line of identity is read before the cut
which encloses it is read.

Here are some more examples. Fig. 6 means ‘Something good is ugly’.

Comn o) & (G

Fig. 6 Fig. 7 Fig. 8 Fig. 9
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Place a cut around this graph and Fig. 7 results: ‘It is false that something
good is ugly’, that is, ‘Nothing good is ugly’. A comparison with Fig. 3 shows
that Fig. 8 reads ‘Something good is not ugly’. And if we place a cut around
this last graph, we obtain Fig. 9, which means ‘It is false that some good
thing is not ugly’, or ‘Everything good is ugly’. In Figs. 6 to 9 we have
expressed the four categorical propositions of traditional logic.

Consider now Figs. 10 and 11. Fig. 10 is quite similar to Fig. 9 (the A
proposition of traditional logic), with one major difference: here there are
two disconnected lines of identity to account for. According to C7, this
means that Fig. 10 refers to two individuals. And according to the method of

e (=)

Fig. 10 Fig. 11

interpretation discussed above, the line whose outer extremity is once (and
therefore oddly) enclosed refers to every individual described as a catholic;
and the line whose outer extremity is twice (and therefore evenly) enclosed
refers to some individual described as an adored woman. (Note that all of
this second line is evenly enclosed; hence the outer extremity of the line
must be evenly enclosed.) Fig. 10 can therefore be read as follows: ‘Every
catholic adores some woman’.

What about Fig. 11? This differs from Fig. 8 (the 0 proposition of
traditional logic) by containing two disconnected ligatures. Consider first
the graph which would result from Fig. 11 if the outer cut were removed:

is a catholic
Fig. 12 u a woman

This means ‘There are two individuals; one is a catholic and the other is a
woman; and it is false that the catholic adores that woman’. In other words,

-‘There is some catholic who does not adore some particular woman’. Now if
we restore the outer cut to obtain Fig. 11 again, and begin our interpre-
tation (endoporeutically) at the outermost part of the graph, it reads as

follows: ‘There is some woman and it is false [this is the force of the
restored outer cut] that some catholic does not adore this woman’. The
second part of this reading, ‘It is false that some catholic does not adore this
woman’, is a denial of an 0 proposition; but this is equivalent to the asser-
tion of the A proposition ‘Every catholic adores this woman’. Therefore Fig.
11 may be read ‘There is some woman, and every catholic adores her’, or

“There is a woman whom every catholic adores’.
Figs. 10 and 11 are thus by no means equivalent, even though the only
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difference is that a line of identity with its spot which is evenly enclosed in
both graphs is evenly enclosed in two cuts in Fig. 10, and is evenly enclosed
in no cuts in Fig. 11. Fig. 10 asserts that every catholic adores some woman
or other; but Fig. 11 asserts that all catholics adore the same woman.?

The important point is the order in which the individuals are selected. It
is one thing, for instance, to claim that for any individual you show me, I
can find some other individual loved by the first one; it is quite another
thing, and considerably more risky, to claim that I can point out some
individual now who is loved by anyone you may select in the future. Accord-
ing to Peirce, the difficulty of representing the logic of relatives graphically
lies entirely in the circumstance that it is necessary to distinguish between
these two propositions (Ms 481). And in EG, this distinction is made—that is,
the order of selection is determined—by the endoporeutic method of inter-
pretation: First all unenclosed lines are read, then those that are once en-
closed, then those that are twice enclosed, and so on.

One case involving a line crossing a cut remains to be discussed. It is the
case in which the line of identity passes entirely through an empty cut, as in
Fig. 13:

Fig. 13 -~

This device signifies the non-identity of the individuals denoted by the
extremities of the ligature: ‘There are two objects such that no third object
is identical to both’. Fig. 14 expresses that ‘Three individuals are not all

¥ =

Fig. 14 Fig. 15

identical’ (4.469), and Fig. 15 says ‘Everything is other than something’
(Ms 277, p. 178). In Fig. 16, where X and Y are the individuals denoted by
the points on the inner cut touched by the two lines, the meaning is ‘If X is

-

Fig. 16 Fig. 17

is captain of |
is captain of

the sun and Y is the sun, X and Y are identical’ (4.407). Fig. 17 asserts that

2 Ms 504, p. 3. Peirce’s reading of Fig. 10 is “Takeanybody, A. Then somebody, B,
can be found such that, either A is not a catholic or A adores B and B is 2 woman”.
And for Fig. 11 he gives “Somebody B can be found such that taking anybody, A, B is
a woman and either A is not a catholic or A adores B”. Cf. 4.452.
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no ship has two captains. If a graph such as this last one is not quite obvious
to you yet, try reading the outer cut first, as ‘It is false that . ...

What if the ends of the line in Fig. 13 are joined? The resulting graph,
18, must mean ‘Something exists which is not identical to itself’.

S O

Fig. 18 Fig. 19

Fy,

'

Without the cut we have Fig. 19, ‘Some individual is identical to itself’.

So far all the graphs we have used involving lines of identity have been
such that the lines were either entirely enclosed in one area or crossed a cut;
we have not yet considered cases in which the line terminates on the cut.
There are essentially two such cases; one in which the line which terminates
on the cut lies outside the cut (i.e., on the place of the cut); and one in
which it lies inside that cut (on the area of the cut). Since the line may be
evenly or oddly enclosed for each case, there are four possibilities to
account for:

G @ =
€ @
Fig. 1 Fig. 2 Fig. 3 Fig. 4
In both Figs. 1 and 2 the line which terminates on a cut lies outside that
cut; it is evenly enclosed in Fig. 1, and oddly enclosed in Fig. 2. In Figs. 3
and 4 the line terminating on a cut lies inside that particular cut;in Fig. 3 it
is oddly enclosed, and in Fig. 4 it is evenly enclosed.

Only one new convention is required for the interpretation of these
graphs. C9. Points on a cut shall be considered to lie outside the area of that
cut (the cut, says Peirce in 4.501, “is outside its own close™). The con-
nection of a point on a cut with any other point within or without the cut is
to be interpreted as if the point on the cut were outside of and away from
the cut.

To make this quite clear, let us consider how we are to interpret Figs. 1
to 4 above. According to C9, the graph of Fig. 1 is equivalent to that of Fig.
1a; both mean ‘Something is F and nothing is G’. Similarly, Fig. 2 is equi-
valent to Fig. 2a; they mean ‘Nothing is F or something is G’ (or, what is the
same thing, ‘If something is F then something is G’). Fig. 3 is equivalent to
Fig. 3a; these graphs mean ‘Something is F and something is not G’. And

© B o B

Fig. 1a Fig. 2a Fig. 3a Fig. 4a
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Figs. 4 and 4a are equivalent; they mean ‘Either nothing is F or everything
is G’ (or ‘If something is F then everything is G).

Graphs may occur whose lines of identity cannot be drawn without their
crossing one another (see 4.460). To indicate that such lines are to be
distinguished (for their intersection would identify all the individuals denot-
ed) Peirce introduced several devices at different times. The earliest is
illustrated in Fig. 5. It was called a ‘frog’ in Ms 494 (p. 1) and was used
there and in Ms 450 (p. 25) to distinguish crossing lines from each other;
but in Ms 492 it was used to indicate that the lines intersect and are one.
The parallel cross lines of Fig. 6 were introduced in 4.462 and 4.460 (Ms

x x X

Fig. 5 Fig. 6 Fig. 7

492), and are illustrated below in 5.13. Fig. 7 illustrates what Peirce galled a
-‘bridge’ in 4.561. We may imagine it to be a bit of paper ribbon, with one
line passing under it and the other line upon it (Ms 455, p. 24). The bridge
is illustrated in Fig. 8 belowand in 5.11.

Still another way to avoid the crossing of lines is to replace some of them
at each of their attachments by a capital letter, using a different capital
letter for each different line. These letters function as names of the indivi-
duals denoted by the lines they replace (4.460461, 561), and they also
serve as quantifiers according to this rule: the area of its outermost occur-
rence determines how a letter is to be read, whether as ‘some’ or as ‘any’. It
is perhaps because of this last function that the letters are called ‘selectives’;
this is suggested by the discussion of selective pronouns immediately follow-
ing the statement of C8 above.

To illustrate the use of selectives and the bridge, I scribe the graphs of
Figs. 8 and 9, each expressing the proposition ‘Some woman loves all of her
children’. Fig. 8, with the lines of identity, employs the bridge; Fig. 9
employs selectives.

Y ischildof X
Fig. 8 Fig. 9
Peirce also employed selectives when introducing new symbols, as in 5.11
below. The use of letters for names facilitates the reading of symbols given
in a list. But however used, the selectives were considered as abbreviations
only, and Peirce gave good reasons for rejecting their steady employment
(4.473;4.561n.1 and the continuation cof the note in Ms 300).
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4.2 THE BETA RULES OF TRANSFORMATION

The Beta rules are, essentially, extensions of the five Alpha rules. Since this
is so, and since the Alpha rules are thus part of the Beta rules, we preserve
the names and numbering given in Chapter 3.

R1. The rule of erasure. Any evenly enclosed graph and any evenly en-
closed portion of a line of identity may be erased. By this rule Fig. 1,
‘Something is F but not G, can be transformed into Fig. 2, ‘Something is
not G’. And Fig. 3 can be transformed into either Fig. 4 or Fig. 5 (and some
other graphs as well). Fig. 5, incidentally, means ‘It is false, that something
is F and the pseudograph is true’.

’-@@.@

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

The new clause in R1, about portions of a line of identity, permits the
transformations of Fig. 1 into Figs. 6 and 7.

—® -
Fig. 6 Fig. 7

Figs. 6 and 7 are equivalent according to C9. Fig. 4 means ‘Whatever is F is
also G’. By R1 it can be transformed into Figs. 8 and 9, which mean ‘If
something is F then something is G°. That Figs. 8 and 9 are equivalent
follows from the endoporeutic method of interpretation, according to
which it is the outermost extremity of a line of identity that determines

how it is to be read.
Fig. 8 Fig. 9

R2. The rule of insertion. Any graph may be scribed on any oddly enclos-
ed area, and two lines of identity {or portions of lines) oddly enclosed on
the same area, may be joined, R2 justifies the transformation of Fig. 1
(above) into Fig. 10, ‘Something is F, and either that same something is not
G or else nothing is H’. And Fig. 4 can be transformed into Fig. 11, ‘Either
whatever is F is G, or else nothing is H’.

= G2

Fig. 10 Fig. 11
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The new clause in R2 permits the transformation of Fig. 12, ‘Either
nothing is F or nothing is G’, into Fig. 13, ‘Nothing is both F and G’.

(= =) =)

Fig. 12 Fig. 13
It also permits the transformations of Fig. 14 into Fig. 1, and of Fig. 15 into

R

Fig. 14 Fig. 15

For if it is true that something is F but nothing is G (Fig. 14), then it is true
that something is F and not G (Fig. 1). And if it is the case that if something
is F then everything is G (Fig. 15), then it is the case that whateveris Fis G
(Fig. 4).

R3. The rule of iteration. If a graph P occurs on SA or in a nest of cuts, it
may be scribed on any area not part of P, which is contained by {P}.
Consequently, (a) a branch with a loose end may be added to any line of
identity, provided that no crossing of cuts results from this addition;® (b)
any loose end of a ligature may be extended inwards through cuts;(c) any
ligature thus extended may be joined to the corresponding ligature of an
iterated instance of a graph; and (d) a cycle may be formed by joining, by
inward extensions, the two loose ends that are the innermost parts of a
ligature.

Whether this rule is applied to graphs involving lines of identity or not, it
requires that the iterated graph be an exact replica of some other graph
already scribed. And when lines of identity are involved, those in the
iterated graph must correspond exactly to those in the original graph: they
must join the corresponding hooks of the corresponding spots.

Clause (a) of the rule permits the transformation of Fig. 1 into Fig. 2, and
that of Fig. 3 into Fig. 4. These transformations amount to an extension of
a line on its own area, and (together with those permitted by clause (a) in
R4, below) they indicate that the shape or size of the line has no signifi-

cance.
-~ e &)

Fig. 1 Fig. 2 Fig. 3 Fig. 4

3 Peirce states this part of the rule (and its converse, R4(a)) in 4.505,. but without
the restriction. Christopher Gray pointed out to me that the restriction has to be
stated, and 1 subsequently found an account in which Peirce made it explicit (Ms 490,
the passage omitted at the ellipsis marked in 4.581).
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And since, according to C9, points on a cut are considered to lie outside and
away from the cut itself, clause (a) of R3 also permits the transformations
of Fig. § into Fig. 6, and of Fig. 7 into Fig. 8.

)
Fig. 5 Fig. 6 Fig. 7 Fig. 8

Clause (b) permits the transformation of Fig. 9 into Fig. 10 (the P repre-
sents any graph).

Fig. 10
And if R3 has already justified the transformations of Fig. 11 into Fig. 12,

Fig. 11 Fig. 12 Fig. 13

and of Fig. 12 into Fig. 13, then clause (c) permits the transformation of

Fig. 14

Fig. 13 into Fig. 14. Notice that the extension of the original line, as in Fig.
13, does not affect the way in which the outer extremity of the line is
enclosed, so that the interpretation of the line remains unchanged. And the
joining of the two lines, as in Fig. 14, adds nothing essentially new: for the
identification of the individuals denoted by the two lines is understood
from the first—since the iterated instance is an iteration of the original line.
Clause (d), finally, permits the transformation of Fig. 15 into Fig. 16:

Fig. 15 Fig. 16

R4. The rule of deiteration. Any graph whose occurrence could be the
result of iteration may be erased. Consequently, (a) a branch with a loose
end may be retracted into any line of identity, provided that no crossing of
cuts occurs in the retraction; (b) any loose end of a ligature may be re-
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tracted outwards through cuts; and (c) any cyclical part of a ligature may be
cut at its inmost part.

In general, R4 enables us to get back to the condition of things before R3
was employed. Clause (a) of R4, thus, permits the transformations-of Fig. 2
(under R3 above) into Fig. 1, Fig. 4 into Fig. 3, Fig. 6 into Fig. 5, and Fig. 8
into Fig. 7. And (b) of R4 permits the transformation of Fig. 10 into Fig. 9.

Note that R4 has no clause corresponding to (c) of R3; yet by R4 we can
obtain Fig. 11 (above) from Fig. 14, thus in effect reversing the transforma-
tions justified by R3 (c). The main clause of R4 permits the transformation
of Fig. 14 into Fig. 17, and then clauses (b) and (a) transform this graph
into Fig. 11. (The alert reader will recognize that the inference from Fig. 14
to Fig. 17 could also have been justified by R1; the illustration here is
meant to show how R4 can be employed, and R1 cannot justify deiteration
of graphs from oddly enclosed areas as R4 can.)

Finally, clause (c) of R4 permits the transformation of Fig. 18 into Fig.

L

Fig. 18 Fig. 19

We come at last to RS, the rule of the double cut. We want to extend this
rule to permit the transformations from Fig. 20 into Fig. 21, and back again

to Fig. 20.
— )

Fig. 20 Fig. 21

Both these graphs mean the same thing, viz., ‘Something is both F and G’.
Nevertheless, these transformations require an extension of the rule, since,
strictly speaking, a double cut is a scroll with no graph—not even a line of
identity—on its first (outer) area. So the rule is restated as follows: RS. The
double cut may be inserted around or removed (where it occurs) from any
graph on any area. And these transformations will not be prevented by the
presence of ligatures passing from outside the outer cut to inside the inner
cut.

It must be emphasized that the new application of RS is restricted to
cases in which lines of identity only are on the outer area of the double cut,
and where these lines do not terminate on that area but pass all the way
from outside the outer cut to inside the inner cut. The point is that there
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are only two ways in which a cut may affect the significance of a line of
identity in Beta: (1) the interpretation of a line as denoting ‘something’ or
‘everything’ is determined by the cut which encloses the outermost extremity
of that line; and (2) the significance of a line is altered from identity to non-
identity when it passes entirely through the area of a cut. It is clear that the
addition or removal of the double cut in accordance with the restriction just
stated cannot possibly change anything in regard to (1) or (2).

As [ mentioned before, the EG conventions and rules are collected to-
gether in Appendix 3. Now we proceed to some illustrations of Beta.

4.3 FURTHER ILLUSTRATIONS

(1) In section 3 of Chapter 2 a graph of the proposition ‘Every mother
loves some child of hers’ was presented. That one was drawn by Peirce in
1893 in a chapter of his Grand Logic, and modeled (as he states) after
Kempe’s system of diagrams. I promised at that time to present an existen-
tial graph of the same proposition after Beta had been introduced, and here
is the graph:

This is obviously far less complicated than the graph of 1893. Let i be the
individual denoted by the line of identity at the left (the mother), and j the
individual denoted by the other line (the child), and read the graph as
follows: ‘Take any individual you please, say i, there is an individual j, such
that, if i is mother of j, then i loves j°.

(2) The syllogism Barbara was something of a favorite of Peirce’s, and
the graphical analysis of it appears in several places throughout his papers
(see, for instance, 4.571, 5.147, Ms 500, Ms AM 806.5*, and Ms L 231,
pp- 21-22). This is the AAA syllogism in the first figure: ‘All F is G, and all
G is H; therefore, all F is H’. In terms of EG, we must justify the transfor-

mation of the graph
&

into the graph
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Premisses.
1 by R3. Iteration within two cuts of the premiss

‘All G is H’ which, in step 1, occurs on SA.

2 by Rl Efasure of the occurrence of *All G is H’
which, in step 2, occurs on SA and thus—by con-
vention—is evenly enclosed.

3 by R3(a).

4 by R3 (b).

5 byR2.

6 by R4. Deiteration of the thrice enclosed === G
since another occurrence of == G is only twice
enclosed.

7 byRS.

8 byRI.
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(3) Next we give Beta proofs of the two axioms of identity: (x)[x =
x}, ‘Everythingisidentical to itself’; and (x) (y)[x =y D. Fx DFy], ‘Take
any two objects x and y, if they are identical then whatever is true of x is
true of y’(Quine [1959], 213; Church [1956 a], 281).
A graph of the proposition ‘Everything is identical to itself ’ is
Here is the proof: :

3 Rs.

2 @ 1 byR2.
3. 2 by R3(b).
4. @ 3 by R3(d).

A graph of the second axiom of identity can be built up by first dia-

gramming (x) (y) [Fx D Fy], ‘Forevery xandy, what is true of x is true of
y’. The top line is the x-line:

| oamm F
)
Since both spots are to appear in the consequent of the conditional propo-

sition we are constructing, we add two cuts, being careful to keep the lines
of identity precisely once-enclosed:

=

Now by joining the lines in the first area of the nest we add the condition ‘x
is identical to y’:

Here is the proof:



T

Now add double cuts by RS.

BETA

by R3.

by R3(a).

by R3(b).

by R3(c).
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The Gamma part of EG corresponds, roughly, to second (and higher) order
functional calculi, and to modal logic. Because it was never completed, it is
occasionally difficult to be sure of just what Peirce was up to. Nevertheless,
the attempt to understand Gamma is exciting and valuable, partly because
the development of this part of the system parallels late developments in
other parts of Peirce’s philosophy. A full account of these parallels (as well
as those to be mentioned in Chapter 6) must wait for later and separate
treatment.

By means of this new section of EG Peirce wanted to take account of
abstractions, including qualities and relations and graphs themselves as sub-
jects to be reasoned about. To do this he invented new spots, new ligatures,
new cuts, and new sheets of assertion. It is one of the Gamma cuts that
provides a first graphical treatment of modality.

The fullest exposition of Gamma was prepared for the Lowell Lectures,
delivered in November and December of 1903. The surviving manuscripts,
Mss 447478, contain also a full and careful exposition of the rest of EG
(which was heavily used in the two preceding chapters). This account of the
graphs was based in large part upon a manuscript entitled ‘Logical Tracts.
No. 2, written perhaps the same year.! These accounts are the major sourc-
es for the present chapter.

5.1 THE 1903 ACCOUNT OF ABSTRACTIONS

On August 4, 1898, Peirce wrote this heading on page 128r of his Logic
Notebook: “We now come to An Extension of Existential Graphs, per-
mitting Abstraction”. Abstraction, he says, “consists in asserting that a given
sign is applicable instead of merely applyingit™. Instead of merely saying

1 Ms 492, published in large part in 4.418-509. The dependence claim is partly based
on the last page of Ms 450, one of the Lowell Lectures, which refers to page numbers
of Ms 492.
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‘Napoleon was a great man’ we say ‘Napoleon was a man to whom the term
“great” could be applied’. Such assertions are easy to come by in ordinary
language, whose abstractive facility renders it “more logically powerful than
any algebra of logic hitherto developed” (LN, p. 127v). Entries in this
manuscript show that Peirce examined the topic for five more days. He
introduced two special symbols, one to signify ordered pairs and the other
to signify either membership in a collection or possession of a character.
Thus, the graph of Fig. 1 means ‘A is the first, B the second of the ordered
pair C’. Fig. 2 means ‘A belongs to the general unordered collection B’ or ‘A
possesses the character B’. Fig. 3, combining the two symbols, reads ‘A
stands to B in the relation C’.2

c
f\iﬂ A—9~B M
A B
Fig. 1 Fig. 2 Fig. 3

By means of these symbols Peirce was able to express such propositions
as ‘Any two things (or the same thing) form a pair’ (Fig. 4), ‘No two things
form more than one pair’ (Fig. 5), and ‘Given any two things, there is some
character which one possesses and the other does not’ (Fig. 6) (LN,
p- 1311). At this early date, Peirce was content to use the standard line of
identity (even for Fig. 5 where it represents two types or categories of
things), and special spots are given in English, as ‘is a sequence’. He recog-
nized that the universe of discourse required attention, but “for simplicity in
these graphs different universes are not distinguished” (/bid.). I wonder how
he would have distinguished them had he decided to do so.

Fig. 4 Fig. 5 Fig. 6

The kind of abstraction defined above is what Peirce called ‘hypostatic’
abstraction.> By 1903 he regarded it as an inference, necessary and imme-
diate, whose conclusion refers to something which is not referred to by the
premiss. This new something is itself called an abstraction, or an ens
rationis, a “creation of the mind” (Ms 458, p. 14); and its being consists in
the truth of what the premiss asserts about something else.* In the Napo-

2  The interpretation of these symbols (and of many others in the pages to come)
suppresses the phrase ‘there exists’ for each unenclosed line of identity. By now the
reader must be quite familiar with the line as quantifier.

3 4.549, 346. It is to be distinguished from ‘precisive’ abstraction, which is the
mental separation of items resulting from concentrating on one element and neglecting
others. 1.549, 4.463.

4 4463, Ms 460, p. 20 verso. Cf. Ms 462, pp. 34-36; 4.235.
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leon example, the term ‘great’ is not referred to in the premiss, although it is
used there; it is referred to in the conclusion. That conclusion might have
been stated differently to make the distinction even clearer: ‘Napoleon
possessed greatness’. Here the new something, the resultant abstraction, is
greatness. It is not referred to in the premiss, but its being consists in the
truth of what the premiss asserts about Napoleon.

Sometimes, little is gained by the more complicated expression which
results from hypostatic abstraction. This is the case with one of Peirce’s
favorite examples (Ms 467, p. 66; 4.463):

Opium puts people to sleep.
Hence, opium has dormitive virtue,

Yet, according to Peirce, the gist of mathematical reasoning lies in so
“turning what one may call adjective elements of thought into substantive
objects of thought” (Ms 462, p. 48). Consider, for instance, the following
~ “logical proportions™ (Ms 467, p. 78):

A particle moves A pear is ripe

A particle describes a line A pear possesses ripeness
A filament moves from its place Ripeness is more or less
A filament generates a surface Ripeness possesses degree

In each column of each set of boxes, the forms of statement in the upper
box have the same relation to the forms of statement under them. And that
relation is the relation of premiss to conclusion in an inference by hyposta-
tic abstraction. Instead of saying ‘A particle moves’ we introduce an ab-
straction and say ‘A particle describes a line’. In the same way we introduce
the notions of dormitive virtue and ripeness. We can go further, imagining a
filament to occupy the whole line at once, and then to move all at once,
from which we get the idea of the filament generating a surface. Nor is it
necessary to stop here.

We may imagine a material film to occupy the whole surface at once, and
may imagine that the film moves in such a way that at each moment it is
quitting the surface at which it is just arriving; and if it is not restricted to
the space of our ordinary intuition we may say that the character of its
motion determines a particular space, tridimensional at each point of it.
This space, probably much more peculiar than the simple space we know,
might, for aught we can see, be occupied all at once by a body. And we
cannot see why this body should not move so that at every instant it should
altogether quit the space that it at that instant occupies; and so on [Ms 467,
pp. 68-69].
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This fertile type of reasoning has given us the mathematical concepts of
number, collection, series, relation; it teaches us to treat operations them-
selves as things to be added, multiplied, and raised to powers (Ms 462,
p. 48). It has given us the philosophical concepts of truth, humanity, justice,
and so on (see Ms 469, p. 10). Small wonder that Peirce wanted his graphs
to be able to deal with such reasoning.

While postponing any general treatment of the different universes of
discourse which abstractions involve, we can do quite a bit with Beta graphs.
Fig. 7, for example, is a graphical definition of necessary reasoning as “that
whose conclusion is true of whatever state of things there may be in which
the premiss is true” (Ms 459, p. 24).

is the premiss

Fig. 7
is the conclusion

The pure mathematician generalizes this proposition, substituting for the
logical terms “the indefinite symbols x, y, z, which are to mean whatever
they may mean; and he thus gets this graph, which is precisely the graph of
inclusion”(Ms 459, p. 25).

Fig. 8

Again, in setting up a proof that there is no multitude intermediate
between 2 and 3, Peirce scribed the graphs of Nullity, Unity, Twoness, and
Threeness. He used only cuts and the standard line of identity, but there is
this special proviso, that in each graph the universe of discourse is to be the
members of the collection there dealt with. The derivation is rather interest-
ing.

Nullity will be expressed by (=) which is of course the pseudograph. For
a universe with nothing in it is absurd. I add one to this. That is I express
that there is something such that if anything is different from this the graph
of nullity holds for it. That is or -@ . It is the graph of Unity. 1
add a unit to this. That is I express that there is something other than what
the graph of unity asserts, but for all that is not this that graph holds. This
gives @ . It is the graph of Twoness. I again add a unit, asserting that
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there is something else but that apart from this new unit the graph of
Twoness holds. This gives

which is the graph of Threeness [Ms 469, p. 68).

Nevertheless, if the graphs are to fulfill their intended purpose and pro-
vide a diagram of reasoning, and an iconic diagram at that (see Chapter 7,
section 24), a special symbolism must be provided for the reasoning about
abstractions. Peirce went about this with enthusiasm, producing for Gamma
a “great wealth of new signs” (4.512). As he pointed out and as we shall see,
however, none of these symbols is of an essentially different kind from
those of Alpha and Beta. Rather we find new versions each of spots, lines,
cuts, and sheets of assertion.

5.11 The Potentials

In Logical Tracts. No. 2 Peirce provided two conventions for dealing with
abstractions. One of them, No. 14, will be dealt with in 5.13 below. The
other, No. 13 (4.470; cf. Ms S 28, p. 51), introduced the lettersQq, 9,07,
95, and 5o on, as spots to be read as follows:

t' A is a proposition or fact.
I x has the monadic quality A.
o
X
32<v x is in the dyadic relation A to y.
t
?{<y x is in the triadic relation A to y for z.

z
Rhos of higher adicity can be scribed in similar fashion, reserving the verti-
cal line for the abstraction, and reading the other lines clockwise when they
are on the same area (read them endoporeutically if they are not). Thus,
Fig. 1 expresses the proposition ‘There is a relation (unspecified) that every
man bears to some woman’.

While preparing his Lowell Lectures in 1903, Peirce improved this con-
vention by replacing the rhos with a new and larger set of spot-symbols,
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which he called ‘the Potentials’. This seemed a good name for symbols used
to signify logical possibilities (Ms 478, p. 159). Here they are, as given in Ms

467, p. 80.5
A==p A is a primary individual.
A== A is a monadic character, or quality.
— A is a dyadic relation.
Aws A is a legisign, or triadic relation.
A=\ A is a graph, or proposition, or fact.
A=A B possesses the quality A,
B
A"Kc B is in the dyadic relation A to C.
A
A ol C B is in the triadic relation A to C for D.
D

The selectives (capital letters) are used to facilitate the reading of the
graphs, and also to call attention to the fact that the lines of identity to the
left of the potentials are “peculiar” in that they denote abstractions, not
existing individuals as in Beta.

One of the ways Peirce used the potentials was to express propositions
having to do with sequences. Let us watch him build up a graph expressing
the relation of coming after, that is, the relation of posteriority. He begins
with Fig. 2, which expresses the relation of being at least as late as.

R
Fig. 2

We can see that this does the job if we choose R to be the relation “less than’,
and let the other lines denote numbers. For then the graph asserts that V is
less than each number that U is less than. So that in counting, U is at least as
late as V. It is not excluded by this graph that U and V are the same
number.

Peirce says that he usually calls the relation of Fig. 2 “inclusion of corre-
lates” because the graph implies that “everything that U stands in any fixed
relation to is included among the things to which V stands in that same
relation” (Ms 459, p. 20).

S Published in 4.524 (cf. 4.409). Incidentally, portions of Fig. 194 in 4.526 are
difficult to make out. You may wish to note the following in your copy of CP: in the
first area Peirce scribed Qq; in the second, Rr; in the third, two instances of Qr; the
other eight spots are instances of R4, four of which are enclosed in cuts containing
nothing else (aside from the lines of identity’).
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Peirce now combines the graph of Fig. 2 with its negative to produce a
graph of the relation of coming after (Fig. 3).

Fig. 3

That is, “to say that X is posterior to Y is to say neither more nor less than
that there is a relation R in which Y stands to whatever X stands in that
relation to as well as to something to which X does not stand in that
relation” (Ms 459, p. 19). R can be any dyadic relation, but it must be fixed
in advance—which is indicated by the double cut. The reason for this require-
ment is that changing from one relation to another would generally be to
change the order of sequence. The reader can convince himself of this by
reading R as the relation ‘greater than’.

Peirce was working up a rule for potentials as he prepared his Lowell
Lectures; he gave it two clauses in one place (Ms 459, pp. 30-31), four
clauses in another, and then stated that the rule had not yet been “fully
formulated” (Ms 478, pp. 159-161). The complete lack of illustrations
makes it difficult to discover just what he had in mind for this rule, other
than embedding in EG his developing doctrine of substantive possibility.
Qualities and relations, which are not existent objects, but are rather general
respects in which existent objects might agree or differ, are examples of
substantive possibilities. Such possibilities are ‘prior to existence’ in the
sense that non-existence does not necessarily prove non-possibility, but
non-possibility does prove non-existence (Ms 459, p. 29). The rule which
purportedly follows from these truths contains the following clause:

Any graph which does not relate to what exists but only to pure substantive
possibilities of the same order is true if the outermost parts of its innermost
ligature is enclosed in an even number of cuts, but is false if that number be
odd [Ms 459, p. 30].

We note first that this clause is restricted to the potentials q, r, s, and ﬁ
(The potential p is ruled out because it signifies a primary individual, not an
abstraction; and 4, 4, and 4 are excluded because they involve ligatures of
existent individuals.) We note next that the effect of it is to allow the
assertion of such propositions as — r and ==, ‘there is a dyadic relation’
and ‘there is a proposition’. And it rejects such propositions as and
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@ , ‘nothing is a quality’ and ‘everything is a proposition’. I have not
found an explanation of what is meant by ‘substantive possibilities of the
same order’, but perhaps it is simply a kind of ranking used to prevent
category mistakes.

5.12  Graphs of Graphs

A second category of Gamma graphs contains those which enable us to
reason about graphs themselves. The various symbols for this metalanguage
are presented in two groups: those for Alpha graphs and those for Beta
graphs. They are taken from Ms 467 (the source of 4.528-529) and Ms 468
(the source of 4.529n.%).

Gamma Expressions of Alpha Graphs

x—4 X is the sheet of assertion (SA).

X X is an area.

XYy X is a graph, or graph-instance.

X—r X is a point,

X=@ X is a permission.

x=X X is a fact.

Xe=p X is a blank.

XK X is an enclosure.

Y—x X is placed on Y.

x—@ X precisely expresses Y.6

X=o=Y X is the area of the enclosure Y.

X=8—Y Xisa point of Y.

Xo=b=y The graph-instance denoted by X contains as a part of it the
instance Y.

x=Y X is an instance of the same graph of which Y is an instance,

Gl '
or X is equivalent to Y.
oY X carries Y as its entire graph in so far as it is of the nature of
= Z to make it do so.

6 It is necessary to place Y in the saw rim “because in thus speaking of a sign
materialiter, as they said in the middle ages, we require that it should have a hook that
it has not got™ 4.528. This saw rim is different from the one to be introduced in 5.13
below.
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In these manuscripts Peirce used the term ‘graph-replica’. I have changed it
to ‘graph-instance’ in accordance with his remark of 4.395n.1, where he
concedes priority to Kempe regarding the term ‘replica’.

Our first illustrations express facts which relate to the physical possibili-

ties and necessities concerning graphs. Peirce distinguished thlrty of these in
Ms 511, but the following graphs are from Ms 468.

The sheet is an area.

There is but one SA. (Take any two objects: if each is SA,
then they are identical.)

A~

@ Every blank is a graph-instance.

There is a point on any blank.

On every area there is a blank. (Take anything you please,
o and if it is an area, then there is a point and a blank such that
that point is both a point of that blank and a point of the
area.)

Every enclosure is a graph-instance.
Every enclosure has an area.

No enclosure has more than one area.

A graph is wholly in one area. (Take any graph, any two
points of that graph, and any area; if one of the points is on
that area, then so is the other.)

Here is an approach to the rule of the double cut:

; It is permitted to place on SA as the entire graph an en-

( € closure on whose area an enclosure is placed as a fact.
X
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Fig. 1 is an Alpha graph which expresses the proposition ‘If it hails then
it is cold’. A graph asserting that Fig. 1 is scribed on SA is given in Fig. 2:

S S
e ey

Fig. 1 Fig. 2

Let us dissect this graph to ensure that it is correct.” Fig. 3 asserts thata
graph expressing ‘It hails’ is scribed on X:

x —ex  x—ttA

Fig. 3 Fig. 4 Fig. 5

Fig. 4 asserts that a graph expressing ‘It is cold’ is scribed on an area of an
enclosure which is scribed on X; and Fig. 5 asserts that X is the area of an
enclosure which is scribed on SA. Joining the lines of each which denote the
area X, gives the graph of Fig. 2.

If it is required to say that the graph of Fig. 1 and nothing else is scribed
on SA, we introduce two new spots: Fig. 5, which means ‘X and nothing

X
@ B
z .
Fig § Fig. 6

else is scribed on Y’ (literally, X is scribed on Y and it is false that there is
something other than X which is scribed on Y"), and Fig. 6, which means ‘X
and Z and nothing else are scribed on Y’. The required graph is obtained by
placing these spots into Fig. 2 in such a way as to produce Fig. 7:

7 Neither Fig. 196 of 4.528 nor the original graph in Ms 467 (p. 92) is quite correct.



74

GAMMA

Gamma Expressions of Beta Graphs
Xisadot.
X is a line of identity.

X is a point of teridentity.

Y is a ligature whose outermost part is on X.

X is a line of identity having its terminals at Y and Z.

g is expressed by a monad spot on X whose hook is joined to
the ligature Y on X.

g is expressed by a dyad graph on X whose first and second
hooks respectively are joined on X to the ligatures Y and Z.

Graphs similar to the last two can be constructed for other polyads. The

rule for reading the individuals denoted by the lines of identity other than

the one positioned at 9 o’clock, is to take them in their order clockwise.
The following illustrations express additional facts about EG.

Every line of identity is a graph.

There is a point in a dot.

If in any dot there is a point A or a point B, these are
identical.

No point is in two dots. (Take any point and any two dots; if
the point is on both dots, then the two dots are one and the
same.)

At whatever point on a line of identity there is a dot. (Take
any line of identity and any point, call it A;if A is a point of
the line, then there is a dot such that A is a point of that
dot.)

If there is a line of identity there are two individual lines of
identity such that every point of the [originat] line is either in
the one or in the other.

This last graph asserts that a line of identity may be regarded as consisting in
two lines of identity. This is presupposed in the rule of erasure which says
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that any portion of an unenclosed line may be erased; for if you erase a
portion in the middle, you obtain two lines.

A few more graphs of graphs will be presented in section 5.2, after the
broken cut has been introduced.

5.13 The Three Gamma Rims

As remarked earlier, the lines of identity to the left of the potentials are
peculiar in that they denote abstractions and not existent individuals; the
lines in the graphs of graphs are also peculiar, signifying graph-instances. The
potentials and the special Gamma spots do call this to the reader’s attention,
but Peirce invested a lot of ingenuity in devising ways to make it even more
noticeable. We consider first Convention No. 14 of Logical Tracts. No. 2.

The line of identity representing an ens rationis may be placed between two
rows of dots, or it may be drawn in ink of another colour, and any graph,
which is to be spoken of as a thing, may be enclosed in a dotted oval with a
dotted line attached to it. Other entia rationis may be treated in the same
way, the patterns of the dotting being varied for those of different category
[4.471].

Early drafts of the manuscript show that Peirce at first hesitated to include
the conventions on abstractions (and those on selectives) because they had
not been “thoroughly studied”, and because he was not yet sure that they
should belong to the system at all (Ms 492, p. 63). His first attempts at
abstraction symbols were simple dotted boundaries (/bid., p. 79), and he
introduced a rule of inference which permits us to transform any graph, say
A (Fig. 1), into another graph which asserts that A is true (Fig. 2); the rule
permits the reverse transformation as well.

A l" - ‘A.I; t-n:e. )

Fig. 1 Fig. 2

The diagraming itself “may be done in different ways™, which indicates
that the reasoner is expected to invent symbols on his own according to his
need.® The rule is stated generally without reference to any particular
symbolism: “{An Alpha or Beta] graph may be replaced by an equivalent
graph introducing an ens rationis, and any graph involving an ens rationis
may be replaced by an equivalent [Alpha or Beta] graph™ (Ms 492, p. 112).

8 Ms 492, p. 111. From Ms 693, p. 282: “The Gamma Part supposes the reasoner to
invent for himself such additional kinds of signs as he may find desirable”. By ‘additi-
onal’ is meant additional to the Alpha and Beta signs, which indicates that Ms 693 was
written earlier than Ms 492, before special Gamma signs began to appear.
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Figs. 1 and 2 are not “strictly speaking”™ equivalent, however; and the recog-
nition of this (/bid.,p. 114) may have urged caution upon Peirce. For the
final version of the manuscript contains the rule in weakened form (4.507,

third clause of Note A), and only one example each of the dotted line and
the dotted cut.

First, the illustration of the dotted line:

Fig. 3

The graph asserts that there is a relation in which every man stands to some
woman, a relation in which no other man stands to the same woman. This

means that there is a woman corresponding to every man, or, “there are at
least as many women as men”.°

Y is a straight line
X6-Y

Z is a straight line
19X 2-6-Y N
is a point is a point
Eisonx isonY
isonZ ison Z .

T is a side (literally, “parts,” pépn) of Z
U is an angle between X and Z
UisonT Uliesbetween Xand Y

V isan angle between Y and Z
VisonT V liesbetween Xand Y
Wisthesumof Uand V

W is less than the sum of two right angles

Fig. 4

9 The reproduction of this graph in 4.470 lacks the bridge which is necessary to keep
the two lines distinct. Also, the tail on ‘is a man’ should extend to the oddly enclosed
line as shown here. Ms 492, p. 82.
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As an example of the use of the dotted cut or oval, Peirce presented a
graphical analysis of a postulate given by Euclid: “If a straight line incident
upon two straight lines makes the angles that are inside and on the same
parts less than two right angles, then those two straight lines being pro-
longed to infinity shall meet on what parts the angles were less than two
right angles” (Ms 492, p. 84). The graph as Peirce drew it is given in Fig. 4
(correcting two small errors of Fig. 120 in 4.471). The dotted oval
which encloses the entire graph signifies that the graph is about abstractions;
and the two once-enclosed dotted ovals signify the same thing for the parts
of the graph. One of these parts, attached to the dotted line, is the postulate
asserted by Euclid; the other part states the conditions under which the
postulate holds. The graph can be read, with some attention to detail, as
follows:

Euclid asserts as a postulate that:

If X, Y, and Z are distinct straight lines; and if there is a point common
to X and Z, and a point common to Y and Z [That is to say, if X and Z
intersect and if Y and Z intersect]; and if T is a side [We are to imagine that
the line Z lies on a plane, cutting that plane into two parts or sides; T is one
of those sides.] of Z, U an angle made by X and Z lying on T between the
lines X and Y, and V an angle made by Y and Z lying on T between the lines
X and Y; and if W, the sum of the angles U and V, is less than the sum of
two right angles—the situation as described so far is shown in Fig. 5—

z

—

X

hg\

Fig. 5

{1}

Then: S is a point on T common to lines X and Y, and S occurs on T
somewhere between the line Z and the infinitely distant parts of T (where T
is a part of a plane passing through the line Z, that part namely that is
bounded by Z and by the infinitely distant parts of the plane of which itisa
part).

As he worked on his Lowell Lectures, Peirce tried to expand the graphical
treatment of abstractions. He spoke of using the colored lines of Convention
14 along with similarly colored selective capital letters (a letter for each
different character). But (felt-tipped pens not being then available) he
judged that this “would involve too much delay and trouble” for ordinary
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work (Ms 464(s), p. 80). For a time he was to shift his attention to specially
designed cuts and spots, but color returned with a vengeance in 1906 (Chap-
ter 6 below).

At first he worked with the single dotted cut of Logical Tracts. No. 2.'°
This cut is used with potentials in the third Lowell Lecture “to denote the
single character which consists in the logical possibility of the rhema written
within it” (Ms 464(s), p. 84). Fig. 6 gives an example which contains an
interpreting Beta graph. The Gamma part of Fig. 6 asserts that some man

©/\—~islefthanded S
Fig. 6 00 Creeccsasesenne - C -hands
I\~==is 2 man is a man

possesses: the character of being left-handed. This is another way of saying
what the Beta part says, and although the graphs are not ‘strictly speaking’
equivalent, it should be possible to infer each from the other. The rule of
inference quoted at the bottom of p. 75 permits this.

At some stage of the work, the unenclosed potential in Fig. 6 was repla-
ced by a second dotted cut, the ‘peculair line’ (to the left of the potentials)
was changed to a dotted line, and the inner potential disappeared. Thus we

Fig. 7
N
have a new graph, given in Fig. 7, of the proposition expressed in Fig. 6. In
addition, the name ‘cut’ was replaced by the name ‘rim’, and a rim was
defined as “an oval line making it, with its contents, the expression either of
a rheme or a proper name of an ens rationis” (4.411). In the final stage of
this development, the system contained three rims with associated tags or
lines: a double dotted cut with a dotted line, a wavy cut with a heavy wavy
line, and a saw cut (different from that of section 5.12) with a saw line. The
function of these lines was to identify the subjects of the abstractions. A
drawing of the saw cut occurs on a rejected page of the Syllabus (Ms 478,
p. 148), and what is called a wavy cut is used for emphasis (with no Gamma

The individual X has the character of being a B.

A is one of the collections of X’s.

A is the collection of all X’s.

10 See for instance early drafts of Ms 478, p. 148.
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function) in a letter to William James written in August, 1905 (Ms L 224).
Above are the three rims, as well as I can make them out.

The saw rim functions in much the same way as the capped variable
prefix does in Principia Mathematica. 1f Fx is ‘x is a man’, X(Fx) will be the
class of all men. ! In the graphs, nothing precisely like Fx can be expressed,
since free individual variables do not occur in EG. But from ‘Something is a
man’ in Fig. 8 we obtain a graph which denotes the collection of all men by
applying the saw rim and attaching the saw line to the heavy dot, as in Fig.
9. Fig. 10 employs the wavy rim and line to signify an unspecified collection
of men, not necessarily the unique collection of all men.

Fig. 8 Fig. 9 Fig. 10

The wavy rim and saw rim are used together in Fig. 11.

Fig. 11

The proposition is that the collection of philosophers is one of the collec-
tions of men.

The wavy and saw rims may contain more than one wavy or saw line, as
in Figs. 12 and 13, where X, Y, and Z signify objects or sets of objects.

Fig. 12 Fig. 13

The difference between these graphs is that the collection of Fig. 13 is the
unique collection of all the X’s, Y’s, and Z’s in existence; that of Fig. 12 is
one of the possible collections of X’s, Y’s, and Z’s.'?

Cinpeu
is ripe

Fig. 14

11 In Principia, the ‘all’ is given in the definition of a class as ‘all the objects
satisfying some propositional function’ (Whitehead and Russell, 1927, volume I, p. 23).
12 For example, if there are exactly two X’s, two Y’s, and two Z’s, then there are 27
possible collections containing at least one each of X, Y, and Z, and the wavy rim can
be used to denote any one of these. One of the 27 is the collection of both X’s, both
Y’s, and both Z’s; and this is the one denoted by the saw rim.
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Consider the dotted rim once more. Fig. 14 asserts ‘A pear is ripe’, and
Fig. 15 asserts that a pear possesses ripeness. If we ignore the extra length of
line in Fig. 16, and take this graph to be equivalent to that of Fig. 15—with
regard to the significance of the dotted rim—then we have a way to diagram
inferences by hypostatic abstraction that involves no change of the original
graph, but simply an addition to it. We can imagine that applying the dotted
rim to a part of a graph is something like placing a grid or a stencil over a
coded message; in each case something is brought to our attention that might
otherwise have been overlooked.

Fig. 17 is the proposition ‘Opium puts people to sieep’.

Fig. 17 Fig. 18

Inserting the dotted rim produces Fig. 18 which means ‘Opium has dormi-
tive virtue’.

A dotted cut may contain more than one dotted line and thus express
more than one character. By adding a dotted line to the graph of Fig. 18 we
add to that graph the proposition ‘Man is susceptible to soporifics’.

Fig. 19

5.2 THE 1903 ACCOUNT OF MODALITY

We have seen that as early as 1898 Peirce thought of making distinctions
between different universes of discourse involved in his graphical assertions.
He postponed any symbolic treatment of this issue, simply stating the requi-
site conditions whenever he thought it necessary. The new symbols of 1903,
the potentials, the graphs of graphs, the Gamma rims and the dotted line,
were all attempts to classify different objects involved in reasoning. He did
not give up on the idea of treating the universe directly by means of improve-
ments on the sheet of assertion, and by 1903 he had some ideas to report.
They are found in the fourth of his Lowell Lectures.
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The essential improvement is to replace the standard SA by “a book of
separate sheets, tacked together at points, if not otherwise connected”
(4.512). The upper sheet will be the standard SA and will represent, as
always, “a universe of existent individuals”, different parts of the surface
representing facts about, or true propositions asserted of, that universe. By
means of the cuts—you may imagine that we are actually to cut out a piece
of the upper surface—we get down to the other sheets in the book, and these
other sheets “represent altogether different universés with which our dis-
course has to do” (4.514). On these new areas may be placed “conceived
propositions which are not realized” (4.512) and reasonings involving quali-
ties (4.514). Now qualities are logical possibilities. and *‘possibilities are
general, and no multitude can exhaust the narrowest kind of a general”
(Ibid.). Nevertheless, an approach to a representation of this “entire universe
of logical possibilities™ is gained by this addition of depth to the sheet of
assertion.

These are intriguing ideas. Peirce admitted that the lecture would not
afford time enough for their full development; more than that, he indicated
that his own practice was restricted to a small number of ideas which he
found “convenient to work with”, and the book of sheets was not yet one of
these (4.514). He finally decided to omit this material (from the ellipsis
marked in 4.512 to the end of 4.514) and substitute instead this single page:

If I were to expound to you fully the theoretically needed new forms of
spots, cuts, and ligatures that are required in the gamma part, you would
find the complexity of it, — presented in the hurried way that would be
necessary, — to be not only tedious but also confusing.

It will be better to give you examples of what I have found most useful,
and leave it to you to study out the rest if you care to do so. I shall have a
printed syllabus ready for distribution at the next lecture which will be a
great help; but even in that I cannot go into the long explanations that
would be needed to expound the theory of the gamma part [Ms 467, p. 21].

The insert makes no mention of the book of separate sheets; and no men-
tion of it is made in the Syllabus, either. But as we shall see in the next
chapter, this idea is central to Peirce’s last revision of EG.

The fourth lecture then continues with an exposition of the broken cut,
published in 4.515ff. Whereas the Gamma symbols already introduced
enable us to make abstractions or logical possibilities the subjects of dis-
course (Ms 460, p. 21), the broken cut will enable us to ‘predicate’ possibili-
ty—and the other modal notions—of propositions and facts. Modality, said
Peirce in about 1902, “is the logical qualification of a proposition or its
copula, or the corresponding qualification of a fact or its form, in the ways
expressed by the modes possibile, impossibile, contingens, necessarium”
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(2.382; cf. 2.323). There are then four modes to be expressed in terms of
the new symbol.'?

It is interesting that in an early draft of the Syllabus, the broken cut was
listed with the potentials, and these illustrations were given (Ms 478, p. 147):

is necessary

% ‘g\“ possible that necessary
\ 7,
-

p

N O} possible
~—

The final draft contains no illustration of the cut but simply describes it as
having “many little interruptions aggregating about half its length™, and then
presents the following, which is the tenth convention in our list: C10. The
broken cut expresses that the entire graph on its area is logically contingent
{non-necessary) (4.410). Thus, Fig. 1 does not assert that it does not rain,
but that it is not necessary that it rains, or ‘It is possible that it does not
rain’.

- -

rd ~

i / v
Fig. 1 ! terains )
. R

-

The Syllabus contains the most explicit statement of rules for the broken
cut. There we learn that Peirce did not allow a graph to be iterated or
deiterated across a broken cut, so that R3 and R4 do not hold for this cut.
RS, the rule of the double cut, does not hold either, although a double bro-
ken cut may be scribed unenclosed as long as both of its areas are blank
(“yet, owing to the failure of Iteration and Deiteration, this leads to
nothing”) (Ms 478, p. 158).

There is one new rule:

Ré6. The rule of cut conversion. (a) An evenly enclosed standard cut may be
transformed (by being half erased) into a broken cut; and (b) an oddly
enclosed broken cut may be transformed (by being filled up) into a standard

cut.
©) :

Fig. 2 Fig. 3 Fig. 4

13  For the record, the four modes just listed are expressed in the upcoming Figs. 5,
6, 1, and 2, respectively.
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The above mentioned fourth Lowell Lecture, the only exposition of the
broken cut that I have found, contains several new inferences. First, from ‘g
is necessarily true’ (Fig. 2) we can derive the proposition ‘g is true’ (Fig. 4).
That is, from Fig. 2 (literally, ‘It is false that g is possibly false’) we obtain
Fig. 3 by R6(b); and Fig. 4 follows from this by RS.

Next, notice that Fig. 3 can be transformed by R6(a) into Fig. 5, which
means ‘It is possible that not-g is false’, that is, ‘g is possible’. Hence, from ‘g
is necessary’ (Fig. 2) it follows that ‘g is possible’ (Fig. 5). Consider the
graph of Fig. 6. Since it is the denial of Fig. 5, it must assert that g is

impossible.
/\ ,\
' ! '
N \ Nt/

Fig. § Fig. 6

It is now easy to show that ‘g is impossible’ (Fig. 6) implies ‘g is false’
(Fig. 8). For from Fig. 6 we obtain Fig. 7 by R6(b), from which Fig. 8
follows by RS.

Fig. 7 Fig. 8

Consider Fig. 2 again. We have seen that it implies Fig. 4.

MERY
Fig. 2 Fig. 4 Fig. 9

But by R6(a) it also implies the graph of Fig. 9, ‘It is possibly false that g is
possibly false’, or ‘It is possible that g is necessary’. Yet, cautions Peirce,
Figs. 4 and 9 “can neither of them be inferred from the other” (4.519).

When lines of identity are employed with the broken cut, quantification
is determined in the usual way, and for this purpose the broken cut is
counted as a standard cut. The following graphs from Ms 468 illustrate this.
Note the readings ‘may be’ and ‘can be’ for possibility.

-~

It is not required.that some a is b, i.e., it may be thatno a is

/ A Y
\3—b} b.

PO It may be that every aisb. (To see that this reading is correct,
/._@\ imagine inserting a standard double cut just inside the broken
‘\ ,’ cut.)

RPN It may be that if a then b de inesse, i.e., it may be that a
N @,’ materially implies b.
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Either no a can be b or any a can be b.

The broken cut may be used with graphs of graphs to state graphical
permissions. The spots were introduced earlier in section 5.12.

It is always permitted to scribe a line of identity on SA with
its extremities attached to blanks. (The Beta axiom.)

XN, If a dot is on SA it is permissible to attach to it a line of
@ identity with the other extremity at a blank.

The next example is intended to express a principle of excluded middle for
graphs.

Take any graph, say g; either g may be placed on SA or g may
be placed on an enclosure which is on SA.

In C10, stress is. placed on the word ‘logically’. Peirce emphasizes this by
prefixing ‘Beta’ to modal terms, as in ‘Beta-possible’ and ‘Beta-impossible’
(4.516). His meaning is that the broken cut per se makes reference to no
knowledge other than the knowledge of formal logic embodied in the Alpha
and Beta parts of EG (4.515). In particular, no reference is made to the way
things are in the sensible world, to the state of the actual universe. This
latter is not irrelevant to all uses of modal terms, however, as Peirce pro-
ceeds to show.

Suppose that neither the proposition g nor its denial are self-contra-
dictory, and suppose that our state of information is such that g may be
true and g may be false. (For example, let g be the proposition ‘It will snow

PRY 7 "\
Fig. 11 '\' 8
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in Waterloo the day after this book is published’.) We are then entitled to
scribe the graph of Fig. 11. Suppose now that we increase our information
and learn that g is true. If we add this to Fig. 11, we obtain Fig. 12. But
relative to our new state of information, & ceases to be true, and we are
thus entitled to scribe Fig. 13. Here we seem to have a derivation from ‘g is

P -
'} K
(CIaK @
7 .-

Fig. 12 Fig. 13

true’ to ‘g is necessarily true’ (Fig. 13). But we saw earlier that the converse
derivation holds, that ‘g is necessarily true’ (Fig. 2) implies ‘g is true’ (Fig. 4).
If both of these derivations hold, the notion of necessity collapses to the
notion of truth, and modal logic would add nothing to the logic of pro-
positions. To prevent this from happening Peirce employs the doctrine that
“possibility and necessity are relative to a state of information™ (4.517;
cf. 2.347), and he introduces a sign to call this to the reader’s attention.
Namely, he attaches cross marks to the broken cut

to distinguish the particular state of information to which it refers. And a
similar sign has then to be attached to the simple g, which refers to the state
of information at the time of learning that graph to be true [4.518].

Instead of Fig. 12, then, we have Fig. 14:1*
Fig. 14 (. (\%"_ MR-

The result is that relative to a state of information there may indeed be a
collapse of modal notions into the notions of truth and falsity. But only for
omniscience would the collapse be total.

Peirce calls these marks ‘selectives’, and he points out that they are
peculiar in that they refer to states of information as though these were
individual objects.'® They are in fact lines of identity signifying abstrac-
tions, like the peculiar lines used with potentials. This becomes clear in the

e
Fig. 15 @ g

14 This corrects Fig. 187 of 4.518. Other graphs in 4.518-522 (Fig. 193 of 4.522 in
particular) are not quite as Peirce had them, and they are corrected in the text above.
15 This use of the word ‘selective’ is not as different from the earlier use introduced
in Chapter 4 (end of 4.1) as it might seem. The modal selective, however, is not merely
an abbreviation for another symbol.
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graph of Fig. 15, which asserts that there is a conceivable state of informa-
tion in which the knower would know g to be true and yet would not know
another graph h to be true. And here, says Peirce, “we have a new kind of
ligature, which will follow all the rules of ligatures” (4.521). These selectives
have a definite order of succession, and they provide us with an additional
rule for EG, the seventh in our list:

R7. The rule of modal selectives. From & we can infer .

Presumably the number of selectives indicates the order of selection.

R7 is similar to a ‘rule of necessitation’'® which holds for some contem-
porary modal logics. That rule may be stated as follows: ‘If A is a theorem,
then necessary-A is a theorem’. Peirce’s rule appears to be broader in that
the condition is extended to non-logical matters and not restricted to theo-
remhood in a given system of logic. On the other hand, when the selective is
employed in Ms 467 Peirce refrains from reading any graph of the form

by the word ‘necessary’.

Presumably, then, the broken cut with its selective expresses in graphical
form Peirce’s thesis—undergoing serious rethinking in 1903—that “‘by varying
the supposed state of information all the varieties of possibility are obtain-
ed”(3.442). This thesis distinguishes two extreme varieties: (1) essential or
formal possibility, namely “that which supposes nothing to be known except
logical rules”; and (2) substantive possibility, which “supposes a state of
omniscience” (3.442; and see 4.67). The broken cut without the selective
represents essential possibility; used with the selective, it represents any
other variety of possibility, not necessarily excluding substantive possibility,
but principally some state of information intermediate between the ex-
tremes.

One last note. To express that a state of information B follows after the
state of information A, Peirce suggests using a symbol he had employed five
years earlier in another connection:

A—a—B

This gives us a symbolic expression of R7:

a5

16 So-called in Hughes and Cresswell (1968), for instance. No general comparison of
Gamma and the broken cut with contemporary modal logic is intended here. A good
beginning, restricted to certain modal propositional calculi, is made in Zeman (1964).
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TINCTURED EXISTENTIAL GRAPHS

The 1903 account of Gamma contained some fabulous ideas, but Peirce was
not satisfied with it. In the first place, he was sure that there were rules of
inference for Gamma yet to be discovered, although he thought he had
given “perfect rules” for the broken cut. In the second place, he had been
unable to develop the purely syntactical exposition of Gamma that he had
aimed for; the use of his new symbols depended too heavily on their signi-
fications. He said this much in the 1903 Syllabus (Ms478, p. 157).

These problems were never solved by Peirce, but he avoided them by
working up a brand new treatment of EG in which no special Gamma
symbols would be required.’ In fact, in its final form, the new exposition
would not even distinguish the three parts Alpha, Beta, and Gamma, al-
though all the elements of Alpha and Beta would be retained.

It is important to emphasize at the very beginning of this chapter that
Peirce made absolutely no changes in the graphical rules of inference while
he was producing this exposition.> The rules he employed throughout are
essentially the same as those given in Chapter 4 above. For this reason the

1 Peirce continued to use certain of the potentials and graphs of graphs after 1903.
Potentials crop up in notebooks, loose sheets, and even letters to William James. By
1908 he was using Roman numerals for potentials, as in 4.620ff. In a March, 1906
entry of the Logic Notebook, p. 2731, he employs some old and some new graphs of
graphs.

2 Perhaps ‘absolutely’ is just the slightest bit too strong. He did add the new phrase
“in different Provinces” to one old rule (Fourth Permission, 4.569) which had appeared
as a derived rule in many expositions of EG since 1898; it can indeed be derived from
our Chapter 4 rules, and Peirce remembered that it was not independent (4.567). The
fourth permission is a grahical version of the principles of the distribution of the
universal quantifier over conjunction and of the existential quantifier over alternation.
Peirce’s scepticism regarding its validity (Ms L 477, quoted in CP 8, p. 298; cf. a letter
to William James dated February 26, 1909, p. 23, in Ms L 224) is not justified. He also
made a slip in stating the second permission which he detected and pointed out to
Lady Welby in a letter written in February, 1909 (Ms L 463, verso of p. 4). The last
sentence of the rule in question, “This involves the Permission to distort a line of
Identity, at will”, seemed to permit the joining of two evenly enclosed lines.
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rules are not discussed until the last section of the chapter, when a few
suggestions for changes and additions will be made. Peirce himself suspected
that modifications might be necessary (Ms 490 at the 4.581 ellipsis), but he
apparently did not pursue his new discoveries long enough to find them.

6.1 THE TINCTURES

The germ of the new exposition was present in 1903, when it had occurred
to Peirce to replace the single sheet of assertion with the book of separate
sheets in order to deal with logical possibilities. As pointed out in the last
chapter (section 2), the idea did not seem convenient at the time, and he
worked instead with the broken cut. Further elaboration of the idea was not
reported until the spring of 1906, when Peirce announced his “very recent
discovery” (4.576) that the area within the cut, to be viewed as the verso of
SA, represents a kind of possibility.

The cut may be imagined to extend down to one or another depth into the
paper, so that the overturning of the piece cut out may expose one stratum
or another, these being distinguished by their tints; the different tints repre-
senting different kinds of possibility [4.578].

The cut would retain its function of negation, but the effect of scribing a
graph on the verso would be to exclude a possibility (not simply an actuali-
ty) from the universe.

Peirce arrived at this analysjs while considering the “anomaly” by which in
EG the relation ‘other than’ is expressed differently from any other relation
(LN 265r). It is the only relation requiring that a graph be partly in one area
and partly in another; it requires that a line of identity cross a cut. Thus, the
graph of Fig. 1 asserts that some woman is other than any angel. Hitherto,

is s woman

Peirce would have said that Fig. 1 contains two lines, one on each area, and
joined at the point on the cut. But now he observes that the graph does not
assert that there is any such thing asan angel, but asserts that there is an idea
of an angel. It means, says Peirce, that “‘she lacks some essential character of
an angel” (LN 266r). This form of proposition, then, does not relate one
existent individual to another, but relates an existent to a character, that is,
to a possibility. Such a relation, between subjects of different categories of
being, Peirce called a ‘reference’ (3.572). And it gives him an interpretation
for a graph that crosses a cut. The investigation had begun on December 14,
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1905 (LN 264r), and on March 9, 1906 (LN 274r) Peirce concluded that all
discourse admits of but two kinds of objects: actualities (represented on the
recto of SA) and possibilities (represented on the verso).

When Peirce announced his discovery at the April meeting of the National
Academy of Science, he was hopeful that it would singlehandedly enable
him to complete Gamma. It did not. The new interpretation did enable him
to symbolize references in EG;and it did enable him to express a condition-
al proposition which would not be true simply because its antecedent
failed. Thus, on this new interpretation, Fig. 2 asserts ‘It is not possible that

Fig. 2

a man fails in business without suiciding’. The shading represents Peirce’s
blue tint (done with a blue pencil; see Ms 490, the passage omitted at the
end of 4.575). This is more than a conditional de inesse (the material
conditional); it is in fact a strict implication (more is said about this issue
in section 2). But the cost of these two benefits was too high. By making
the cut do double duty, there was no way to separate the expression of a
possibility from the expression of a denial. The inability simply to affirm
a possibility had to be remedied, not only for purely logical reasons, but
because Peirce was becoming more and more insistent on recognizing in a
formal way his belief that there is objective possibility, a possibility which is
not based on ignorance. The inability to express simple denial had to be
remedied because without it, the conditional de inesse could not be
diagramed. Although Peirce was cumrently modifying his former staunch
Philonian viewpoint, he continued to admit “with Scotus” (Ms 292, p. 51)
that there is a conditional de inesse.

The shortcomings were not noticed immediately. They gradually came to
light in April and May, as Peirce tried to work his discovery into a full
blown exposition of the graphs, to be included in his third Monist article on
pragmaticism. His earliest drafts of that article, in Ms 292, still recognize
only the two universes of actuality and possibility, but they contain first
mention of the ‘tinctures’, the patterns suggested by heraldry which Peirce
would soon use to distinguish surfaces from each other. The heraldic tinctures
were originally invented to solve the problem of how to represent colors using
only black and white. Peirce simply adapted them to suit his own purpose.

The first improvement on this schema, one which brings it into line with
Peirce’s doctrine of the categories,? is the addition of a third universe: the

3 It is something of an impertinence to treat the categories as briefly and as
indirectly as I do, but the full story of the relationship between the categories and EG
is beyond the scope of the present book. I must assume that the following description
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universe of Destined Results, or whatever “cannot be considered as affirm-
ing or as denying either an actuality or a possibility” (Ms 295, p. 43). The
recto will be symbolized by the heraldic tinctures of metal, the verso by the
tinctures of color. The third universe will be represented by patches of fur,
to be“sewn’on the recto or verso as required. The names of the universes
vary somewhat from draft to draft: the recto denotes the Actual and the
Existent, or the Actual and True, or Actual Fact; the verso denotes the
Questionable and the Possible, or things Possible in themselves; and the
aggregate of patches of fur denotes the Commanded and the Compelled, or
what is sure to be (Ms 295).

A second improvement on the early scheme is a partitioning of the three
universes into ten sub-universes. These latter universes are designated by
specific tinctures, that is, by patterns like those of Fig. 1 in section 2 below
(the partitioning in 6.2 differs from that to be given here, and the differ-
ence will give you an idea of the course of Peirce’s thought; cf. 4.553 n.1).
In one early list of Ms 295 there are two metals: (1) argent refers to the
actual or true in a general or ordinary sense; (2) or refers to the actual in
some special sense. There are five colors: (1) azure refers to logical possibili-
ty; (2) sable refers to subjective possibility (that which is not known to be
false); (3) gules refers to a more objective mode of pessibility; (4) purpure
refers to ability; (5) vert refers to what is in an interrogative mode. There
are three furs: (1) vair refers to what is commanded; (2) potent-counter-
potent refers to the compelled; and (3) ermine refers to the rationally (or
metaphysically or secondarily) necessitated.

A heavy dot or line on SA has, till now, denoted an existing individual.
With the increase in universes and sub-universes, however, its interpretation
will depend upon the tincture of the area on which it is scribed. If scribed
on a metal, it will still refer to an existing object of the universe of actuality;
if scribed on color or on fur, it will refer to an abstraction of whatever sort
the specific tincture represents. A special difficulty arises in the case of a
line of identity which extends from one tinctured surface to another on the
same area, and we must decide what sort of being that line will denote. A
method for doing this will be presented later. Here I simply point out that
such a line will enable Peirce to relate actualities to possibilities without
requiring the line to cross a cut, that is, without requiring a graph to be
partly in one area and partly in another. See the discussion of Fig. 1 above. .

A third improvement remedies the second mentioned shortcoming of the

of 1903 will remind the reader of the doctrine: The categories are the three modes of
being which can be directly observed in whatever is before the mind in any way at any
time. They are Firstness, the being of positive qualitative possibility; Secondness, the
being of actual fact; and Thirdness, the being of law that will govern facts in the future
(1.23).
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April lecture, the inability to express simple denial. Thus far denial had
involved scribing a graph on the verso, making a cut around the graph, and
overturning the excised piece to expose it. The result would be the exclu-
sion of whatever is scribed on the overturned area from whatever kind of
possibility the area represents. (If the graph to be negated contains a cut,
the twice negated graph within that cut must be scribed on the recto, and so
forth.) This version of denial will be retained, but in addition the Graphist is
now permitted to make the cut and leave the excised piece where it is,
without overturning it. This results in a denial having the mode of truth
belonging to the place of the cut. Thus, in Fig. 3, the cut is made on the

Fig. 3 Fig. 4

recto of SA and the piece is overturned bringing the verso into view; the
graph means ‘It cannot rain’. In Fig. 4, the graph is scribed on the recto and
the incision is made, but the piece is not disturbed; the meaning is ‘It does
not rain’. The cut in Fig. 3 has a verso area, that in Fig. 4 a recto area. To
mark this distinction Peirce introduced a finely dotted line to represent a
cut having a recto area, while the standard oval line represents a cut having a
verso area.* Use of the dotted cut for the graph of Fig. 4 produces Fig. 5.
Fig. 5 It rains

A fourth, and relatively late, improvement in Ms 295 remedies the first
mentioned shortcoming of the April lecture, making the system capable at
last of affirming (not just denying, or excluding) possibilities. The single
sheet whose recto represents actuality and whose verso represents possibility
is replaced by a ‘Phemic sheet’ whose signification depends upon the
tincture of its outermost border or rim. In Peirce’s terminology, a pheme is
a grammatical sentence, whether interrogative, imperative, or declarative.
Peirce means to allow for the expression of all such varieties of sentences in
his new version of EG, and the term ‘Phemic sheet’ calls attention to this.

When the outermost border of the Phemic sheet is metal, usually argent
(symbolized by the blank, white sheet), the sheet will be called the Sheet of
Assertion and will be devoted to the expression of propositions. When the
border is in color, usually azure, it will be called the Sheet of Interrogation
and will be devoted to the expression of questions. When the border is in
fur, usually sable (which has moved over from color), it will be called the

4 Ms 295, pp. 44, 47, 81. It is this dotted cut that occurs in the figures of 4.564-571.
Do not confuse it with the dotted rim or the broken cut of Chapter 5.
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Sheet of Destination and will be devoted to the expression of resolutions. It
is stated that every part of the sheet will have some tincture or other, and
the graphist may tincture the various parts according to his needs. If for
example he wishes to express on the sheet of assertion (metal) the propo-
sition ‘It is possible that it will rain’, he must tincture some part of the sheet
with a tincture of color, say azure, and scribe ‘It will rain’ on that part. The
graph is given in Fig. 6, where the rectangle is used simply to mark the edge

|
|

ﬁ(%%}

Fig. 6

of the Phemic sheet so that the border in argent—represented by the white
of the paper—can be detected. You may assume that all graphs scribed in the
rest of this book are scribed on metal unless otherwise noted; and I will
assume that no further rectangles are necessary.

In these later drafts Peirce emphasized a notion he had spelled out for EG
as early as 1898 (Ms 484) and again in 1903 (4.431). He urged the reader to
imagine that the graphical analysis is a collaboration between two parties,
whether they are two groups of people, two people only, or two mental
attitudes or states of one person. That the two parties are present in one
person follows from the view that “Reasoning is nothing but the discourse
of the mind to its future self” (Ms 450, p. 3). And the purpose of existen-
tional graphs is “to aid one in talking to himself” (Ms 650).

One of the parties, called the Graphist, is responsible for scribing the
original graphs at the beginning of the investigation or discussion; the other,
called the Interpreter, draws inferences from these graphs by changing them
in accordance with the permissions of the system. The Phemic sheet, before
anything is scribed on it, represents whatever is taken for granted at the
outset by the Graphist and Interpreter.

6.2 PROLEGOMENA

The final result of the development I have sketched, Peirce’s last full scale
revision of EG, was published in an article for the October 1906 Monist:
“Prolegomena to an Apology for Pragmaticism” (4.530-572). All the basic
elements have been described already, and there is only one major refine-
ment to be reported. It is this: the Phemic sheet is no longer the only sheet
we are working with. Rather, we are to imagine having an abundant supply
of different sheets, each with its own tincture and each with its own recto
and verso. Although the verso is supposed to be a rougher surface than the
recto, the two sides of a sheet will have the same tincture; thus the three-
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step process of negation can be reinstated without qualification, since there
is no danger of undoing the effect of the third improvement. At the start of
any investigation, the Graphist and the Interpreter designate one of these
sheets as the Phemic sheet. The other sheets are to be inserted into or placed
upon the Phemic sheet as needed. The whole image is that of patchwork:
the sheets are cut up and pieced together on the Phemic sheet in the very
scribing of graphs.

There are two minor changes regarding the tinctures. First, the third
mode of being is now called ‘intention’; but the representation of actuality
by metal, possibility by color, and the third universe by fur is unchanged.
Second, each mode of tincture is a class or collection of four tinctures. Why
four?

Different states of things may all be Actual and yet not Actual together; and
the same is true of the Possible and the Destined. Two graphs in the same
Province, i.e. on the same continuously tinctured surface will be asserted,
not merely as True, but as True together. Hence, since four tinctures are
necessary to break the continuity between any two parts of any ordinary
surface, four metals, four colors, and four furs will be required [Ms 295, p.
44].

Note the definition of ‘province’ as ‘a continuously tinctured surface’.

Fig. 1 below contains the twelve tinctures as Peirce gave them in Prolego-
mena. Do not allow yourself to be put off by the difficulties you would face
in trying to use the printed patterns; they were meant for publication only.
In his own practice Peirce used colored ink and colored pencils; pencils
today are easy enough to obtain in at least sixty different hues. It is doubt-
ful that as many as sixty would be necessary for any mortal philosopher.
In any case, the visible spectrum, with variations in brilliance and saturation,
affords all the differences that could ever be required. We might then simply
“fancy or pretend” (Ms 300, p. 39) that there is some similarity between the
three fundamental hues and the three Universes. However, in 1906 re-
production of colors was “in print impracticable”, so Peirce resorted to the
heraldic tinctures for Prolegomena (Ms 300, p. 40).

In order to make the illustrations which follow as clear as possible, and to
make it easier for the reader to begin experimentation of his own, I include
in Fig. 1 an indication of the universes that might be represented by the
tinctures and the pencil colors which have been convenient in practice. I
have not yet found a use for fer or plomb.

We begin our illustrations by considering Fig. 6 at the end of the pre-
ceding section. In the earlier system of graphs there described, the azure
tincture was supposedly applied directly to the Phemic sheet, thus providing
for the expression of a possibility. If we imagine instead that an azure tinc-
tured sheet has been placed on the Phemic sheet to produce that same figure,
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then in the system of Prolegomena it will express the same proposition, ‘It is
possible that it will rain’.
As a second example we present the graph of Fig. 2 which is taken from

husband
Fig. 2 ETm %
husband

Prolegomena (4.569). This graph asserts that there is a Turk who is the
husband of two different persons. The area of the enclosure is on color
(azure), and it thus denies the possibility that the individuals denoted
by the lines above and below the cut are identical. But would it make a
difference if the area of the cut had been on metal, say argent? No, says
Peirce of a similar graph in Ms 295 (p. 53). The point is that azure repre-
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sents subjective possibility, so that Fig. 2 merely says that it is contrary to
what is known by the Graphist that the two individuals should be the same.
If the area of the cut were on argent, the meaning would be unchanged; for
the Graphist still “would give his word” that as far as he knows, the indivi-
duals are not the same.

This is not a particularly helpful example of the use of the tinctures, and
a reader of Prolegomena will be astonished that it is the only example.
There is in the article one line of reasoning in particular which seems to
require a tinctured graph and seems unfinished without it. I refer to an
argument Peirce developed to support his two related claims, that “there
are real possibilities” (4.547) and that the tinctures (or something like
them) are necessary.’

6.2 1 On Behalf of the Tinctures

The argument consists in a logical analysis of the following proposition,
which we shall refer to as Ppn P (for ‘proposition P’): ‘There is some
married woman who will commit suicide in case her husband fails in
business’. The issue revolves around what this proposition means and how it
should be represented in EG.

6.211 Peirce distinguished two interpretations of Ppn P. The first, which
we shall call P-de inesse, takes Ppn P to mean only that there is a married
woman, and either her husband does not fail or she commits suicide
(4.569). The word ‘only’ emphasizes that P-de inesse does not assert that
the failure has any connection with the suicide (see LN p. 320r).

This is the interpretation of logicians for whom every conditional is a
Philonian (material) conditional.® Peirce, at one time “decidedly™ of this
opinion (Ms 292, p. 51), reversed himself when it became clear to him that
the Philonian logician could ‘“take no consistent position other than that
unactualized possibility is unreal” (Ibid.). His realism and his pragmatism
had convinced him of the reality of possibility. Common sense too: “I find
after all that I have no doubt that I really can raise my arm whether I
actually do so or not” (Ms 292, p. 52; cf. 4.579). He therefore could no
longer accept the Philonian version as the interpretation of every condi-
tional, although, as was made clear in 6.1, he continued to acknowledge that
there are such propositions. Perhaps Ppn P is one of them?

To find out, we consider the graph of P-de inesse, given in Fig. 3. Now
the trouble with this proposition is that its truth is too easily guaranteed.

5 The argument is spread out, but 4.546 and 549 contain what is essential for our
purpose. A parallel argument appears in 4.580 (Ms 490).
6 See for example 3.442-443, published in 1896. Also Ms 292, p. 51.
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For it will be true if either some married man does not fail in business
(whether his wife commits suicide or not) or some married woman commits
suicide (whether her husband fails in business or not). To show this, let us

Fig. 3 wife of
suicides

suppose the first alternative is true.” Then we can scribe ‘Some married man
does not fail in business’ on SA (an abbreviation I will continue to use for
the metal Phemic sheet), as in Fig. 4. From this graph, by R2 (insertion onto

= wifc o o vife of irﬁu i

Fig. 4 Fig. 5

odd), we obtain Fig. 5. By R3(b) the unenclosed line can be extended into
the first area of the scroll of Fig. 5, after which joining the loose ends by R2
yields Fig. 3. This is satisfactory as far as P-de inesse is concerned, but to say
that Ppn P is true just because there exists a married man who does not fail,
is absurd. Hence P-de inesse is an inadequate interpretation of Ppn P.3

6.2 12 Instead, says Peirce, “what is really meant™ by Ppn P is that there
is some married woman who under all possible conditions would commit
suicide if her husband fails in business (4.546). We shall call this proposition
P-modal. It would now be useful to examine a graph of P-modal, especially
since the point of adding the tinctures to EG was to render such proposi-
tions expressible. No such graph appears in Prolegomena, which is rather
curious-since in the April lecture (see 4.580) Peirce had already scribed
graphs of the required form. But that lecture represents the earliest stage in
the development of the tinctures, the stage in which possibility and negation
could not be separately expressed. The manuscripts written at that time
contain many graphs illustrating this early stage of development, but almost
none (perhaps only two) of the final stage which is reported in Prolego-
mena. It is quite likely that the final improvements came in such a rush that
Peirce had insufficient time to ‘get over’ the early system and ‘get used to’
the new one.

7 Let the reader construct a similar proof beginning with the second alternative
‘Some married woman commits suicide’.

8 Peirce formerly held that the inconveniences of the Philonian conditional,
nowadays known as the paradoxes of material implication, could always be overcome
by combinationts of Philonian conditionals and denials of conditionals (3.443).
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Nevertheless, we can supply what is missing and complete the analysis
ourselves. Figs. 6 and 7 both express P-modal. The shaded areas are on

wife of

Fig. 6 Fig. 7

gules to represent objective possibility. Fig. 6 means ‘There is a married
couple, and it is necessarily the case that if the husband fails then
the wife suicides’. The shaded ring may also be read ‘not possibly not’. Fig.
7 means ‘There is a married couple, and it is not possibly the case that the
husband fails while the wife does not commit suicide’. That these two
readings are equivalent is essentially a matter of definition, although it may
not be immediately apparent from the graphs. (The graphical equivalence
will be demonstrated in the next section of this chapter.) In Principia nota-
tion, using the square and the diamond for the necessity and possibility
operators respectively, the propositions of Figs. 6 and 7 look like this:

Fig. 6 (3x) @y) Wxy & O [Fy OSx ]]
Fig. 7 (3x) (3y) [Wxy &~ < [Fy & ~Sx]]

The equivalence will now be obvious if it is remembered that, for any
propositions A and B,~<>A=[0~ A, and ~{A & ~B]={A D B].

P-modal does not have the disadvantage of P-de inesse that was pointed
out above. The fact that some married man does not fail in business (Fig. 4)
is not sufficient to make P-modal true (Figs. 6 and 7). One other difference
is worth noting. Pde inesse is false of a given married couple if and only if
the husband does in fact fail and the wife does not then commit suicide. In
order to make P-modal false of a given married couple, however, it is not
necessary for the husband actually to fail; “it will suffice that there are
possible circumstances under which he -would fail, while yet his wife would
not commit suicide” (4.546). This difference is graphically expressed in
Figs. 8 and 9:

[ty

wife Of wwmefails wife of "“ fails
Ere )

Fig. 8 Fig. 9

inspection should convince you that if Fig. 8 is true, Fig. 3 must be false;
and if Fig. 9 is true, Fig. 7 must be false.

It is useful to have a means of expressing the difference between P-de
inesse and P-modal, but if EG is really to be adequate for modal logic it
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must contain rules of inference which would permit us to express such
relationships as the equivalence between Figs. 6 and 7, or the inference from
Fig. 6 to Fig. 3 (since what is true of all possible worlds must be true of the
actual world), or the inference from Fig. 8 to Fig. 9 (since what is actual is
possible). No such rules appear in Prolegomena, in its early drafts, or, to the
best of my knowledge, in the later papers of Peirce. A first attempt to
provide such rules will be made in the next section of this chapter. In the
remaining pages of this section we will examine the fate of the tinctures after
Prolegomena.

6.22 1906 and After

In the later drafts of Prolegomena Peirce admitted that he had tried only
four tinctures: argent, or, azure, and gules. His study of even these was “by
no means” thorough, and he was far from certain that they would “work
smoothly” (Ms 295, p. 53). He confessed this, he said, in order “to avoid
leading other students astray”, that is, in order to make it clear that these
parts of the system were in the experimental stage. That the tinctures were
still in the experimental stage in the published article is partly explained by
the fact that Peirce allowed himself no more than four months to write it.
As late as January 8, 1906, he did not intend to include an exposition of EG
in his third Monist article on pragmaticism, and by May 29 the editor of The
Monist had Prolegomena in his hands.” Continued experiment with the
tinctures was apparently limited by the urgency of other work (see 4.653
for a typical comment), some of it directly related to, and even precipitated
by, his new version of EG. In the first place, there were two more articles in
the series and their promised proof of pragmaticism to produce. In the
second place, the tinctures seem to mark Peirce’s attempt to begin a syste-
matic investigation of the sort he had called for in his 1903 Syllabus of the
Lowell Lectures, when he despaired of completing Gamma:

The Gamma part of the system of Graphs can never be perfected until we
have precisely analyzed all the conceptions of logic in terms of the three
Categories, together with such other exact conceptions as it may be found
necessary to add to those of the Categories. But this is a labor for genera-
tions of analysts, not for one [Ms 478, pp. 164-165].

Peirce kept looking for improvements in EG along the lines of Prolegomena,
for several years keeping the scope of his graphs wide enough to include

9 The January date occurs in Ms 283, p. 56 (5.554), a draft of the third article in
which the graphs are mentioned only in passing. The May date is from a letter of Paul
Carus to Peirce, Ms L 77. I am indebted to Max Fisch for calling the first passage to my
attention and for supplying the May date, which was particularly important in
establishing the order of Peirce’s discoveries.



TINCTURED EXISTENTIAL GRAPHS 99

“creations of explanatory conjectures, as well as the whole process of in-
duction”.'® But the tinctures remained somewhat “perplexing” to use, !!
and after the spring of 1908 they were not often mentioned. Brief remarks
about EG in the April Monist of 1908 include mention of Prolegomena but
not of the tinctures (4.617); some accounts in letters and unpublished pa-
- pers also ignore them, 2 a few are critical of them.!3

There are still noteworthy passages, however, which reveal something
about the course of Peirce’s later thought. We will consider five such
passages.

1. In an undated manuscript (for which early in 1908 might be a good
guess) Peirce claims to have made a “slight” improvement on Prolegomena:
he suggests drawing (preferably with a red pencil) a border around SA, and
“in the margin outside the red line, whatever is scribed is merely asserted to
be possible” (Ms 514, pp. 18-19). This“improvement”, reminiscent of the
dotted oval of 1903, does not become a permanent feature of EG.

2. In September of 1908 Peirce reconsiders key propositions from Pro-
legomena, and scribes the graphs of Figs. 6 and 7 above in his Logic Note-
book (p. 320r). He misinterprets Fig. 7, reading it as though the shading
applied only to the spot “fails’. Other similar propositions are also translated
into his algebraic notation. To account for necessity in this notation he
introduces an index (the letter omega) to denote ‘“‘a state of things”, and he
applies the universal quantifier to it. The resulting form, I ,, is read “under
all circumstances”, and it is immediately employed to express the propo-
sition P-modal (LN p.319r):

Elzjnw wClei * (?w) \Ilswi )

Four months later this way of expressing necessity is adapted to the graphs.
The instrument is a line of identity which looks and functions suspiciously
like the modal selective of 1903 (5.2. above). This line is attached
to the tops of graphs to which it applies, and it obeys the usual graphical
conventions for quantification. Among the examples given (LN p. 340r) are
these three:

10 This is from Ms 296, p. 7, written about March of 1908.

11 Ms 300, p. 40, written about March of 1908. He had recognized from the first
that there was difficulty involved in the use of the tinctures. (Ms 292, two pages
numbered 45.)

12 As in Ms 514 of 1909, a letter to Lady Welby of January and February 1909
(Ms L 463), a letter to William James of February 26, 1909 (or begun then), and
Ms 650 of July and August 1910.

13 Ag'in a letter to Allan Douglas Risteen of December 1911 (Ms L 376), and a letter
to Frederick Adams Woods begun in October 1913 (Ms L 477).

14 See the beginning of 5.13 above, where Convention No. 14 from Logical Tracts.
No. 2 is discussed.
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p is true under some circumstances.

]
P
@ p is true under all circumstances.

Under all circumstances somebody wins & somebody loses.

Using this notation it is easy to scribe P-modal in EG without using the
tinctures (the graph of Fig. 10 does not appear in LN or anywhere else to
the best of my knowledge, but it is quite possible that Peirce had it in
mind).

Fig. 10 wite of ‘@

It would have been difficult for Peirce to be satisfied with this. For one
thing, the tinctures were designed with more than formal logic in mind; they
were meant to provide a structure in terms of which Peirce could apply his
categories to propositions and inferences, to hypotheses, questions, and
commands, to “all that ever could be present to the mind in any way or any
sense” (Ms 499(s)) — and to do this with the same system that handled the
formal logic as well. Indeed, once the tinctures were set up and in running
order, a steady use of the graphs could be expected to turn up discoveries
that would enrich and modify the theory of the categories, while continuing
study of the categories would improve the classification of the tinctures.
The ‘modal selective’ just illustrated would lend itself to none of this.

Secondly, this modal selective is essentially another ‘peculiar’ line of
identity, of the same order as those introduced along with the 1903 poten-
tials and graphs of graphs. But since 1903 Peirce had become convinced that
special symbols of this sort were inappropriate for the task he had in mind.
He made this clear in a manuscript written early in 1908, when he reviewed
the history of his tinctured graphs. His studies had convinced him of the
need to further differentiate the categories, and so he distinguished the
sub-universes which the tinctures represented. The tinctures seemed necessa-
ry because the differences in universes and sub-universes

are not differences of the predicates, or significations, of the graphs, but of
the predetermined objects to which the graphs are intended to refer. Conse-
quently, the Iconic idea of the System, requires that they should be repre-
sented, not by differentiations of the Graphs themselves but by appropriate
visible characters of the surfaces upon which the Graphs are marked [Ms
300, pp. 38-39].
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This, I think, explains why the broken cut was abandoned after 1903.

Thirdly, the development of the tinctures was concurrent with the devel-
opment of Peirce’s notions of possibility and necessity. Summarizing these
changes in the same manuscript just quoted, Peirce said that he had come to
view necessity as ‘“‘that which tends to govern both Thought and real Fact,
even should it never become absolute in either sway” (Ms 300, pp. 39-40).
Now it is likely that the new and broader view does not require a total
rejection of the earlier view of necessity as “that which is true under all
possible circumstances”,!® but it is the earlier view that the graphs of
January 1909 express, and that is all they express.

Sure enough, on February 26 of 1909, the reality of possibility asserted
itself again and Peirce penned the following ‘“Note on the Tinctures” in his
Logic Notebook (p. 345r):

To illustrate the need of the Tinctures, take the fact that no matter what
Particles there may be on a Line, there will be a point place on that Line (if
nothing but Particles are on it) where there is no Particle but where a
particle can be placed.

3. A third noteworthy passage from the late papers, this one written on
September 13, 1910, occurs in what Peirce called “The Prescott Book’. “It is
my duty to investigate Modality more closely”, he wrote, and he scribed a
graph expressing that a person may dream that Theodore Roosevelt attacks
him (Ms 277, p. 171):

Fig. 11

The shaded area represents the “field of may-be”.
4. The tinctures are included in an exposition of EG written in June of
1911.'¢ There the graph of Fig. 12 is scribed to express the proposition

Fig. 12

15 Ms 300, p. 38. See also 6.590ff written in 1891.

16 The manuscript is Ms 670, “Assurance through Reasoning”. It is a revised version
of Ms 669, which was begun in May of 1911. Peirce hoped to contribute this paper to a
book of essays edited by Lady Welby and others. See Peirce (1953), 42-46.
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‘Either there is a mind or there is an absurdity’. But this does not quite
assert that the existence of a mind is an absolute necessity, says Peirce,
since it does not say that there would be a mind under all possible
circumstances. To make this explicit, it is necessary to indicate on
the border of the Phemic sheet that the logical universe is that of meta-
physical possibility.

This would seem to be an extension of the significance of the border
tincture. Previously, in Ms 295 and in Prolegomena itself (see the very end
of section 1 above, and 4.554), there were three choices only for the Phemic
sheet: if its border was tinctured in any metal, it was to be taken in the
indicative mood, as expressing propositions; if its border was in any color, it
was to be taken in the interrogative mood, as expressing questions; and if its
border was in any fur, in the imperative mood, as expressing resolutions.
With the present improvement, the sheet will presumably represent what-
ever sub-universe its border tincture represents. To indicate that whatever is
scribed expresses a question, not just any color will do; it will be necessary
to use some particular color — on our scheme, vert. The universe of meta-
physical possibility might be denoted by gules. In this way, there is no limit
to the universes that the Phemic sheet can represent.

After the above comment regarding Fig. 12, Peirce continues as follows:

The nature of the universe or universes of discourse (for several may be
referred to in a single assertion) in the rather unusual cases in which such
precision is required, is denoted either by using modifications of the heral-
dic tinctures, marked in something like the usual manner in pale ink upon
the surface, or by scribing the graphs in colored inks [Ms 670, pp. 18-19].

When tinctures are used, then, as in Prolegomena, the metals are used to
mark different kinds of existence or actuality, the colors mark different
kinds of possibility (here listed as “possibility consisting of ignorance, of
variety, of power, of futurity”), and the furs mark different kinds of inten-
tion. When what is scribed is not intended for publication, however,
“nothing else is so simple as the use of colored inks”. (Except perhaps the
use of colored pencils.) To express the metaphysical necessity of mind,
Peirce instructs us to scribe the graph of Fig. 13, which reads, literally,“Itis
metaphysically impossible that there should not actually exist a mind”
Ms 670, p. 20).

Fig. 13

In this manuscript (and also in Ms 674) there is interesting evidence that
Peirce had been following out the ‘program’ suggested by the tinctures,
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namely, the analysis of the conceptions of logic in terms of the categories.
For he makes use of the notion of command--‘the commanded’ is a universe
represented by one of the furs (vair)—to analyze the notion of assertion.

5. The last passage we examine occurs in a letter Peirce started to write
to Frederick Adams Woods in October of 1913. I quote it with one substi-
tution, two additions, and three subtractions: (1) a reference to pages in the
October 1906 Monist has been replaced by the corresponding reference to
CP (taken from Burks’s bibliography in CP 8, p. 297); (2) a figure number
has been added to each graph to facilitate our discussion; (3) instead of
shading the three oddly enclosed areas of the graphs (one in the first, two in
the second) as Peirce did, I use metal throughout, because the shading in the
letter had nothing to do with the tinctures (as the letter makes clear) and
was employed solely to render the graphs more perspicuous (see 4.617). The
interruptions were recorded by Peirce.

{In Prolegomena] I made a blunder quite like that of some over-fatigued
computor who makes 9 + 7= 2 and when he reviews his work repeats the
same idiocy. My blunder is contained in [4.569, from “For the sake of
illustrating this . . .” up to the statement of the fourth permission]. Curious-
ly enough it was not until two years after the publication that I happened to
notice my fallacy.

(Interruption)
Instead of scribing
[Fig. 3] » wife of -
suicides
.

as I did, I should have scribed

[Fig. 14]
Caictes )

It would pay any very accurate thinker, such as you and Royce are, to
examine the fallacy.

(Interruption)

It cost me the trouble of my nonsensical “tinctures” and heraldry [Ms L
477].

Three questions arise: (1) What is the fallacy of 4.569? (2) How would the
substitution of Fig. 14 for Fig. 3 repair the fallacy? (3) How did the fallacy
lead Peirce to his ‘nonsensical’ tinctures?

(1) I can find no fallacy in the disputed passage. The passage contains
eight sentences, and only one of them seems to me to contain an error. That
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one is the fifth sentence, which claims that Fig. 3, because it is scribed all in
one province, thereby asserts that the wife’s suicide is “connected with”the
husband’s failure. It is not clear what ‘connected’ means, and the fifth
convention (4.562) which deals with the connections of graph-instances
does not make it clear. But if the claim is that this undefined connection
makes Fig. 3 express more than P-de inesse, so that the tinctures are not
necessary after all, then the claim must be rejected. For the inference from
Fig. 4 to Fig. 3 (above) is valid whatever the fifth convention asserts, and it
is the inference which shows both that Fig. 3 precisely expresses P-de inesse,
and that P-de inesse is not an adequate interpretation of Ppn P.

This ‘error’, however, can hardly be the fallacy that Peirce was referring
to, since the correction serves to establish, rather than to undermine, the
need for the tinctures.

(2) The substitution of Fig. 14 for Fig. 3 in the disputed passage has no
curative value. If Fig. 14 was supposed to show that the tinctures were un-
necessary, by expressing P-modal with a non-tinctured graph, then it failed
its purpose. For Fig. 14 will be true if anything at all-a lemming, for
instance—commits suicide.!” And this is certainly an inadequate interpre-
tation of Ppn P.

(3) The disputed passage contains the same line of reasoning on behalf of
the tinctures that was examined above in connection with Figs. 3 t0 9. 1
cannot find a fallacy in it. And as was pointed out in connection with Fig.
10, the need for the tinctures was not based on any one argument. Now the
reference in the letter to “nearly two years after the publication” (of Prolego-
mena) might indicate that Peirce had in mind the very passages of the Logic
" Notebook which led us to Fig. 10. But remember that those considerations
led Peirce not to abandon the tinctures, but to produce still another argu-
ment in their defense (see the final quotation in item 2, p. 101).

After repeated examination which was as careful as I could make it, and
fully aware that I myself may be another over-fatigued computor, I have come
to the conclusion that there is no fallacy in the disputed passage and no need
for Fig. 14. I do not see that the tinctures are a mistake, but consider them
a splendid tool for any philosopher who wants to be “architectonic beyond
what Kant dreamed of™ (Ms 280, p. 18).

6.3 SECOND GENERATION TINCTURES

The conventions and rules to be suggested in this section are put forward as
provisional only, since they represent nothing more than a first attempt to

17 The reader is encouraged to construct his own proof of this. It will be very similar
to the proof of Fig. 3 from Fig. 4.
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extend the use of the tinctures beyond Prolegomena and Ms 670. It is not
known whether they will stand the test of further research, and it seems
likely that they do not cover all cases that might arise. A full scale compa-
rison of the tinctured graphs with contemporary modal logic awaits separate
freatment.

6.31 Conventions

At least the following changes in EG conventions (refer to Appendix 3) are
called for: In C1, C2, and C3, replace ‘sheet of assertion’ by ‘Phemic sheet’.
In C7 and C8, replace ‘individuals’ by ‘entities’; it may be that this change
renders inappropriate the second occurrence of the word ‘identity’ in these
two conventions. Replace C6 by the following: C6*. The scribing of a heavy
dot or unattached line on some part of the Phemic sheet will denote a
member of whatever universe is represented by the tincture of that part of
the sheet. Thus, if a line is scribed on a metal, it will refer to an existing
object of some universe of actuality; if scribed on a color or a fur, it will
refer to an abstraction of whatever sort the specific tincture represents.

We must now decide upon a method for interpreting a line of identity
which extends from one province (continuously tinctured surface) to an-
other. If the different provinces are on different areas, separated by cuts,
there is no problem; the line will be interpreted endoporeutically, as usual,
and the province of its outermost extremity will determine the status of the
entity in question. But if the line extends into different provinces on its
least enclosed area, ambiguity arises. One thing we must avoid is identifying
existing individuals with abstractions; so we adopt a new converition which
avoids that, but which leaves other relationships to be determined later.
C11. For the interpretation of a line of identity which extends from metal
to color or from metal to fur, metal takes precedence: that is, the line does
not denote the abstraction (represented by the color or fur), but denotes an
existing individual to whom the abstraction pertains. Thus Fig. 1 asserts that
some student of Plato possesses wisdom (following Peirce in Ms 459,

is a student of Plato
Fis.1 C;é on =

p. 34, I classify the quality wisdom as a logical possibility). Now in some
cases a reference to C11 can be avoided by introducing a dyad spot and
carefully piecing together the tinctured surfaces—carefully using the colored
pencils. Instead of Fig. 1, for example, we may scribe Fig. 2, which also is
read ‘Some student of Plato has (possesses) the quality of wisdom.’

is a student of Plato
Fig. 2 et = T3
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A line of identity which extends from color to fur will, I suspect, have to
be interpreted case by case. To express the proposition ‘The quality of
mercy is not strained’, I scribe Fig. 3, using argent, azure, and potent.
Literally, it denies that the quality of mercy and anything that is a compul-

Fig. 3

sion pertain to each other.

In Fig. 4, sable (some shade of gray) is used on the second area to express
a kind of rational necessity. The proposition is, ‘People who live in glass

is a person
Fig. 4 lives in a glass house

houses should not throw stones’. Although the ligature extends into three
different provinces, its denotation is unambiguous because its least enclosed
part is wholly contained in one province.

In Fig. 5, gules (some shade of red) is used to express an objective type of
possibility. The proposition is, ‘You can lead a horse to water but you
cannot make him drink’. The lines of identity, because their outermost

[REIRRN 53]

Fig. 5

Pty

parts are wholly contained in a single province whose tincture is metal,
denote individuals of the actual universe. The tinctures of color through
which the lines pass do not alter this denotation, but indicate that certain
possibilities pertain to the denoted individuals. The white (metal) space
between the colored area and the colored enclosure is required to indicate
that tll;e modality attaches to the conjuncts and not to the conjunction
‘but’.

18 Here is a literal reading: Take any person X, any horse y, and any water z; it is
possible for x to lead y to z, but it is not possible for x to make y drink z. Note that
without the possibility tincture Fig. 5 would assert that everybody leads every horse to
all the water there is (quite an accomplishment in itself), but fails to make them drink.
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Fig. 6 presents an abstract statement of a familiar piece of moral suasion:
‘Whoever is compelled to go one mile is commanded to go two’. Potent

Fig. 6

(some shade of orange) expresses what is compelled, and vair (some shade
of brown) expresses what is commanded. Literally, the graph asserts that
the commandment to walk two miles pertains to anyone who is under
the compulsion to walk one. Note that Fig. 7, because no part of the line
is on metal, diagrams a quite different proposition: ‘Every compulsion
to walk one mile is a commandment to walk two’.

Fig. 7

6.32 Rules

In this first attempt to provide rules of inference for the tinctures, I retain
the rules R1-RS with a new restriction attached to the rule of the double cut;
namely, RS will apply only to double cuts whose place and whose first and
second areas are metal.’® 1 add three new rules which, in their present
formulation, have to do with metal and color only. The numbering con-
tinues that of earlier chapters.

R8. Any graph, evenly enclosed on metal, may be tinctured with color.

R9. Any graph, oddly enclosed on color, may be tinctured with metal.

R8 permits the transformation of Fig. 1 into Fig. 2; that is, from ‘P is

P

Fig. 1

true’ it follows that P is possible. Since a blank also is a graph, this
rule permits part or all of an evenly enclosed metal area to be tinctured in
color. Thus, from Fig. 3, which asserts that if P is true, then the pseudo-

Fig. 3 Fig. 4

19 As stated earlier, this material is put forward provisionally. Further experimentation
may show that additional restrictions are necessary to preserve the consistency of the
system. I fully expect that new rules will be called for. By publishing these preliminary
results I hope to elicit help in the development of the tinctured EG.
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graph is true, we obtain Fig. 4: ‘If P is true, then the pseudograph is

logically possible’.
R9 permits the transformation of Fig. 5 into Fig. 6; that is, from

SI= @
Fig. 5 Fig. 6

‘P is not possible’ we can infer ‘P is false’. Also, from Fig. 7, ‘P is necessary’,

'

Fig. 8 Fig. 9

Fig. 7
we can infer Fig. 8 by R9; and from this it follows that P is true (Fig. 9) by
RS. Similarly, from ‘It is not possible that both P and not-Q are true’ (Fig.

10), we can obtain ‘P materially implies Q* (Fig. 11).

Fig. 11

Fig. 10
R8 provides us with a facile way to diagram inferences by hypostatic
abstraction. For example, from Fig. 12, ‘A pear is ripe’, we obtain Fig. 13,

s a pewr is 3 pear
C e
» 18 —

e———

s ripe
Fig. 12 Fig. 13

‘A pear possesses ripeness’. And from ‘Opium puts people to sleep’
(Fig. 14) we infer ‘Opium has dormitive virtue’ (Fig. 15). Fig. 15 can al-

so be read, ‘Man is susceptible to soporifics’.

is opium
puts to sleep
saman
Fig. 14
There appears to be no difference in meaning between the \graphs
=r= S P F
=== "3
Fig. 17

of Figs. 16 and 17; both assert that P is possible. So we introduce a rule of

inference which permits their transformation into each other:
R10. (a) Any province tinctured in color can be transformed into a

province of metal having a border in that color; and (b) a province tinctured
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in metal but with a border in some tincture of color can be transformed into

a province of that color. The width of the border may be adjusted to the

R10 enables us to give the proof which was promised in section 6.212
Fig. 18
Q.

above, the proof of a graphical equivalence from which it will follow that

Figs. 6 and 7 of that section are equivalent. We show, namely, that Figs. 18

and 19 are equivalent in the sense that each can be derived from the other.
F0

Fig. 18 means ‘It is not possible that both P and not-Q are true’, and Fig. 19
means ‘It is necessarily the case that P implies Q’, or, ‘P strictly implies
First we show that from Fig. 18 we can infer Fig. 19.

= 7 Fig. 18, by R10(a), or by R9.

1, by RS.

2, by R10(b).

Now, in order to obtain Fig. 18 from Fig. 19, we need only reverse the
Fig. 18 by R10(b).

steps of the foregoing proof, justifying the passage from step 3 to step 2 by
R10(2) or by R9; that from step 2 to step 1 by R5; and that from step 1 to
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GRAPHICAL ANALYSIS AND OUTCROPPINGS

7.1 THE PURPOSE OF EXISTENTIAL GRAPHS

In a letter to P. E. B. Jourdain, dated December 5, 1908, Peirce recalls
sending to Cantor a proof that there are more collections of members of any
collection than there are members of that collection. He repeats the proof to
Jourdain, and then writes the following:

I have made no other contribution to Cantor’s theory, from lack of mathe-
matical ingenuity, my forte consisting in logical analysis. I have a complete
theory of this process, including its methodeutic, which I base upon my
existential graphs which is my chef d’ceuvre [Ms L 230a].

This is probably the source for the phrase “My chef d’ceuvre” which occurs
on p. 291 of CP 4.} Recently Professor Max H. Fisch has pointed out that
the sentence in which the phrase occurs is badly constructed and perhaps
insufficiently punctuated.? It could be taken to mean that Peirce’s chef
d’ceuvre is his complete theory of logical analysis (including its metho-
deutic), which ke bases on EG although it might conceivably be based on
some other system of logic. Or it could be taken to mean that EG is Peirce’s
chef d’oeuvre, as the printing in CP suggests. The larger context of the
several drafts of the letter does not decide this issue, but it is made clear
that the connection of prime importance to Peirce is that between EG and
logical analysis.

Now by a logical analysis of an inference or proposition or concept,
Peirce meant a dissection (Ms 498) or a picking to pieces (4.622) of the
structure of that subject matter. And when he introduced EG to his audience
at the Lowell Institute in 1903, he made clear at the start that the

1 To the best of my knowledge there is no other passage in the manuscripts which
could be a source for the phrase. That the letter was written to Jourdain was established
by Max H. Fisch.

2 Inaletter to the author, dated June 4, 1971.
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purpose which the system was designed to fulfil was *““to enable us to separate
reasoning into its smallest steps so that each one may be examined by itself”
(Ms 455, p. 2). The aim was not to facilitate reasoning, but to facilitate the
study of reasoning. Moreover, this was the purpose that had previously
motivated the construction of his logical algebras (Ms 499), so that his shift
of interest from algebras to graphs cannot be explained as a change of
program. Rather, he simply became convinced that the graphs could do a
better job of analysis than the algebras could. Let us now take a look at the
graphical analysis itself.

7.11  The Graphical Analysis of Inference

What are the smallest steps into which a reasoning can be dissected?
Insertions and omissions. According to Peirce, if each elementary operation
of a symbolic logic is either an insertion or an omission, then the operations
of that logic are “as analytically represented as possible” (4.374). The idea
of this analytic reduction of logical transformations was not new with the
graphs: it was implicit in the definitions of logical composition and aggrega-
tion (3.199) that Peirce had given in 1880 (4.280), although its first “virtual
enunciation” was given by O. H. Mitchell in 1883 (Ms 905, p. 38). But it was
EG that seemed extraordinarily well designed to reflect this analysis of
inference. The following illustration will make this clear.

The truth first enunciated by Mitchell is that the passage from premisses
to conclusion “‘in the manner which is alone usually called necessary reason-
ing, can always be reached by adding to stated antecedents and subtracting
from stated consequents” (Ms 905, p. 38). That is, a “logically necessary
reasoning” is one in which “the substance of the conclusion can be reached
from the copulate premiss” by such changes as convert ‘If A is true then
either C and D may be true though E is false or else F and G are true’, into
‘If A and X is true then either C may be true though E and Y are not both
true or else F is true’ (Zbid.). The inference from the first of these propositions
to the second is valid, but this is hardly obvious. And putting it into
algebraic symbols may not be much of an improvement:

1. AD[(DC~E)V(FG)}
~ 2 AXD[(C~(EY)) VF]

But express these propositions in EG:

J& ®
@ &

Fig. 1 Fig. 2
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Now mere inspection suffices to determine that Fig. 2 can in fact be derived
from Fig. 1. For the differences between the two graphs can all be explained
in terms of insertions onto odd areas (justified by R2) and erasures or
omissions from even areas (by R1). The reference to antecedents and conse-
quents should also be clear, since in EG the antecedent of a conditional is
scribed on the first or oddly enclosed area of a scroll, and the consequent on
the second or evenly enclosed area.

Peirce’s favorite example of the analysis of inference into successive inser-
tions and omissions is its application to the categorical syllogism in Barbara.
The derivation is given in 4.3 above, and it is not difficult to see that each
step is a kind of omission or insertion, justified by one of the five rules. In
step 2, for example, a proposition already asserted is exhibited in a new
connection by its insertion within more cuts. This is an example of experi-
mentation on the diagram, and according to Peirce it is by observation of
the results of such experimentation that new relationships can be brought to
light (3.363).

I make two further observations.

(1) When Peirce in 1893 turned his attention to the psychological theory
of association, he came up with something remarkably similar to the anal-
ysis of inference just presented. He accepted the usual two principles of
association, contiguity and resemblance, but he split “the suggestion of B by
A into two operations, one leading from A to AB and the other from AB to
B” (7.393). To illustrate this, he performed a mental experiment; namely,
he looked out the window, saw the cow whose milk he and his wife
generally drank, and observed the following sequence of ideas:

I imagine I see a boy sitting by the cow milking her. The boy, and the stool,
and the pail are added to my idea. Thence, I imagine that boy carrying the
pail to the house. The cow and stool have dropped out. The straining of the
milk presents itself to my imagination. A bowl is there and the pail. The boy
is standing by; but I lose sight of him [7.428].

Studying that series of mental events, Peirce observed that as each new idea
was added, there was always “something identical carried along” from
before (7.429). The boy approaching the house with the pail was thought
of as the same boy, the pail as the same pail, that he had just been thinking
of. “To one skeleton-set another is added to form a compound set. Then,
the first, perhaps, is dropped and the ideas which remain are viewed in a
new light” (7.430). Insertions, omissions, and viewing things in a new light.

(2) Peirce claimed that EG enables one to reproduce the very “motions
of reasoning™ (Ms 693, p. 278), “the operation of thinking in actu” (4.6). In
addition to insertions and omissions, he probably had in mind certain iconic
features of the graphs which are discussed in section 7.24 below. But reason-
ing for Peirce is necessarily a conscious act, since it is something which
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requires deliberate approval (2.182). Hence, by ‘motions of reasoning’
Peirce did not mean the thought-process “as it takes place in the mind”
(2.27), for the thinker is not aware of it:

A man goes through a process of thought. Who shall say what the nature of
that process was? He cannot; for during the process he was occupied with
the object about which he was thinking, not with himself nor with his
motions [2.27].

Indeed, neither physiology (2.27) nor psychology (2.184) have gained much
knowledge about this process, and even if it were otherwise—if, for instance,
it could be established that thinking is a continuous process, as Peirce
believed it to be (2.27)—such knowledge would be “entirely irrelevant to
that sort of knowledge of the nature of our reasoning” which is needed for
logic (2.184). What is relevant to logic is the argument formulated after the
fact as a summing up of the thinking-process. Here is how it works.

Having completed a process of thought, a man tries to express his conclu-
sion in an assertion which will capture “the attitude of his thought at the
cessation” of the process. He then seeks to justify his confidence in this
conclusion by casting about for an assertion “which shall strike him as
resembling some previous attitude of his thought™ (2.27). The propositions
and arguments extracted in this way constitute a kind of ‘self-defence’ of
the original process, and Peirce maintained that it is ““only the self-defence
of the process that is clearly broken up into arguments” (Jbid.). By ‘motions
of reasoning’ and ‘operation of thinking’, then, Peirce meant the elements of
this self-defence.

Now all thought is dialogical and takes place in signs (4.6); hence the
mind itself is a kind of sign “developing according to the laws of inference”
(5.313). The Phemic sheet of EG, in relation to scribed graphs which are
determinations of that sheet, represents the mind in relation to its thoughts,
which are determinations of that mind. The mind as a comprehensive
thought is represented by all the permissible transformations of the total
graph. And any particular process of thought is represented by the graphical
expression of the appropriate self-defence. Hence, “the system of existen-
tial graphs is a rough and generalized diagram of the Mind” (4.582).

7.12 The Graphical Analysis of Propositions

According to Peirce, EG classifies propositions into “hypotheticals (in the
old and broad sense, including conditionals, copulatives, and disjunctives),
categoricals, and relatives” (Ms 1147, p. 24 of “Logical graphs”). The classi-
fication is based on the number of lines of identity which are necessary to
express the proposition in question: If the graph of a given proposition
contains zero number of lines of identity that proposition is a non-relative
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(truth-functional) proposition; if its graph contains one line of identity, the
proposition is a categorical proposition; and if its graph.contains more than
one line of identity, it is a relative proposition (Ms 481, p. 10). Although
this is a three-part distinction, the major division, reflected in the usual
separation of the Alpha part of EG from the Beta part, is between propo-
sitions whose form does not require the use of lines of identity and proposi-
tions whose form does require their use. This classification of propositions is
not changed by the addition of a means to treat abstractions. Rather, the
addition of either the different types of lines of identity (in Gamma) or the
differently tinctured sheets, introduces a cross-classification.

7.121  Subject and Predicate. — In the traditional syllogistic, every propo-
sition is analyzed into a single unique subject and a single unique predicate.
The terms ‘subject’ and ‘predicate’ are retained in Peirce’s logic of relatives,
but with a broader application. A proposition, he says, consists of two
parts: the predicate, “which excites something like an image or dream in the
mind of its interpreter”, and the subject, or “subjects, each of which serves
to identify something which the predicate represents” (Ms 280, p.32; cf.
3.467). But the analysis of a proposition into these two parts can proceed in
several different ways. For although any analysis of a proposition will show
it to have one predicate and one only, different analyses will produce differ-
ent predicates. This is illustrated in the following passage from the 1903
manuscript Logical Tracts. No. 2.

Let a heavy dot or dash be used in place of a noun which has been erased
from a proposition. A blank form of proposition produced by such erasures
as can be filled, each with a proper name, to make a proposition again, is
called a rhema, or, relatively to the proposition of which it is conceived to
be a part, the predicate of that proposition. The following are examples of
rthemata:

— is good

every man is the son of ==
e 1OVES e

GOd giveS mmmm 10 oo

Every proposition has one predicate and one only. But what that predicate
is considered to be depends upon how we choose to analyze it. Thus, the
proposition

God gives some good to every man

may be considered as having for its predicate either of the following
rhemata:
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SR ||/ T J, , Y

— gives some g00d t0

e 1VES e tO €VETY Man

GOod giVeS mmmmm {0 e

God gives some g00d tO e

God gives wmmmtO €very man
——gives some good to every man
God gives some good to every man.

In the last case the entire proposition is considered as predicate. A rhema
which has one blank is called a monad; a rhema of two blanks, a dyad; a
rhema of three blanks, a triad ; etc. A rhema with no blank is called a medad,
and is a complete proposition. A rhema of more than two blanks is a
polyad. A rhema of more than one blank is a relative [4.438].

Strictly speaking, the above examples, scribed with the line of identity, are
not ‘blank forms’ of propositions. Hence, strictly speaking, they are not
examples of rhemata. However, at the point of the exposition in which this
passage occurs, Peirce had not yet introduced the line of identity, and he
used this passage to begin his explanation of the line by means of what we
have called Conventions 6, 7, and 8.

The rhema, or spot, corresponds to the propositional function of modern
logic. Neither are propositions, both are blank forms which become propo-
sitions if proper names are put into their blanks, or if the selective pronouns
‘something’ or ‘anything’ are attached. In many contemporary logics, how-
ever, the propositional function can be expressed in the notation as a legi-
timate sentence of that notation (that is, as a ‘well-formed formula’). But in
EG' a rhema is not a graph unless it is scribed with a line of identity (or a
heavy dot) at each of its hooks. The upshot of this is that in EG it is not
possible to express a formula with free individual variables.?

7.122 Irreducibility of Triads. — Peirce makes use of the foregoing analysis
to illustrate his ‘“remarkable theorem” that “‘every polyad higher than a
triad can be analyzed into triads, though not every triad can be analyzed
into dyads” (Ms 439, p. 16). Consider, for example, Figs. 1, 2, and 3
representing monadic, dyadic, and triadic spots, respectively. Joining two

d
N

Fig. 1 Fig. 2 Fig. 3

-q — — -

3 The selectives, used to abbreviate the line of identity (see Chapter 4, at the end of
section 1), at first sight look like free variables, but are not; the quantification is
‘implicit’. See Zeman (1967). Astonishingly, I took this ‘upshot’ of EG to be a defect
in Roberts (1963) and (1964), in spite of the fact that I was acquainted with such
systems as that in Quine (1955) in which free variables may not occur in theorems.
Fortunately, J. Jay Zeman saw further; see section 7.22 below.
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monadic spots, as in Fig. 4, produces a medad; it is not difficult to see that
joining a monad spot to a dyad spot will produce a monad spot, since it

Que—q o ot § o.—
Fig. 4 Fig. § Fig. 6

leaves only one loose end; and joining a monad to a triad will produce a
dyad. Joining two dyad spots will produce another dyad, as in Fig. 5; and
joining two loose ends of the same triad will produce a monad, as in Fig. 6.
If two triads are joined as in Fig. 7, a dyad results; but if they are joined as

—-l<\/t-—- >.___.<
Fig. 7 Fig. 8
in Fig. 8, a spot with four hooks results. Adding additional triads will
produce spots of any adicity.
It might be thought that two dyads can be joined in such a way as to
produce triads, as in Fig. 9, for instance. But this depends upon the
existence at the arrow of a point of teridentity (a triad), without which there

. is the value of L
-t Ehmmom
s the value of N

Fig. 9 Fig. 10

could be no such join. Consider also the inference ‘L and N are co-equal to
M, hence, L and N are equal to each other’. Algebraists will represent this in
the two equations L=M and M =N, from which L =N is concluded by virtue
of Euclid’s first axiom. But in EG the premiss is represented as in Fig. 10,
where again a point of teridentity is required (Ms 300, p. 33). And accord-
ing to Peirce, such a point is required, since “teridentity is not mere iden-
tity. It is identity and identity, but this ‘and’ is a distinct concept, and is
precisely that of teridentity” (4.561). Incidentally, the conclusion is in-
ferred from Fig. 10 by R1 (erasure of the spot * —==is the value of M”; cf.
1.346).

7.123 Composition of Concepts. — Another consequence of Peirce’s anal-
ysis of propositions is a solution to the “puzzle” of how concepts are
combined.

Suppose two concepts, A and B, to be combined. What unites them? There
must be some cement; and this must itself be a concept C. So then, the
compound concept is not AB but ACB. Hereupon, obviously arises the
question how C is combined with A or with B. The difficulty is obvious, and
one might well be tempted to suspect that compound concepts were im-
possible, if we had not the most manifest evidence of their existence [Ms
498, pp. 28-29; cf. Ms 499].
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Now Peirce assumes that all propositions can be analytically expressed in
EG (4.583), that is, that the parts of graphs are related to each other “in
forms of relation analogous to those of the assertions they represent” (Ms
L231, p. 15; microfilmed with Ms 514). Hence he concludes that what EG
represents to be true of propositions and concepts must be true of them
(4.583).

What EG tells us about the composition of concepts is this: “each compo-
nent must be indeterminate in some respect or another; and in their compo-
sition each determines the other” (4.572). The components “supply each
the other’s lack” (/bid.). Here there is no attempt to explain one instance of
a combination by replacing it with two such instances. There is, indeed, no
cement which unites two (or more) concepts together. Rather, they fit
together like the pieces of a jig-saw puzzle; or they mesh together, like teeth
on gears. The fit is accomplished by “the minimum possible number of
modes of logical combination, —namely, one only, that in which a hook of a
graph is joined to a single other hook of a graph”.* That is, to render any
spot determinate, each of its hooks must be attached to a hook of another
graph. Yet no concept becomes so determinate that it cannot be made more
determinate (4.583), since it is always possible to increase our knowledge.
And this is reflected in R3 which permits a branch with a loose end to be
added to any line of identity, at any point on that line.’ The general
doctrine, that things indeterminate in themselves function to determine
each other, applies also to propositions, which partially define each other on
the recto and partially limit each other on the verso. ‘Partially’, because, like
concepts, propositions cannot be “perfectly determinate” (4.583).

According to this explanation concepts are combined in very much the
same way that chemical elements are pictured to combine in the doctrine of
valency. It was shown in Chapter 2 that Peirce’s logic diagrams were
consciously modeled after the diagrams used by chemists to represent the
composition of elements. According to the doctrine of valency current
when Peirce learned his chemistry, every element has a fixed number of loose
ends (3.470) or unsaturated bonds (3.469), and a compound is formed
when the loose ends of one atom are joined to the loose ends of other
atoms. In this way each atom may be said to partially determine the other.
Changes in the theory of valency since Peirce’s time do not disturb the basic
analogy; whether chemical composition is regarded as the transfer of elec-
trons from one atom to another or as the sharing of electrons between

4 Ms 296, p. 8. Hooks are joined, of course, by bringing their lines of identity “into
abuttal”.Ms L 463, a draft of a March 1906 letter to Lady Welby, p. 37.
5 On p. 34 of the letter draft referred to in footnote 4, Peirce remarks that “every
line of identity ought to be considered as bristling with microscopic points of teriden-
tity; 5O that —e——when magnified shall be seen t0 be s,
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atoms (co-valency), the atoms may still be said to partially determine each
other. And even if it drops out of chemistry altogether, the notion of
valency may still have philosophical application.

7.2 OUTCROPPINGS

The rest of this chapter is devoted to some relatively unconnected features of
EG, plus concluding remarks.

7.21 The Graphical Notation

EG has no symbol whose sole purpose is to indicate the grouping of ex-
pressions. In this respect it is similar to the bracket-free notations such as
the one invented by Jan tukasiewicz in 1929 (Lukasiewicz [1957], 78).
One major advantage of such notations, according to A. N. Prior, is
economy: “no special rules about bracketing and rebracketing need to be
included among the rules for proving one formula from another” (Prior
[1962], 6).

Even when no special symbol is required, however, grouping is accom-
plished in some fashion in all these systems. In EG, the cut does the job; but
it also expresses negation and indicates quantification. Note, however, that
although the cut separates graphs on one area from those on another area, it
does not impose any ordering onto graphs scribed on the same area. No
symbol or convention does this for EG: “Operations of commutation, like
xy .. yx [and, as Peirce goes on to show, operations of association, like (xy)z
" x(yz)], may be dispensed with by not recognizing any order of
arrangement as significant” (4.374).

These simplifications have two important results. In the first place, the
fact that EG requires only two special symbols (the cut and the line of
identity) plus the sheet of assertion accounts in part for the unusual ease
with which inferences can be drawn in Alpha and Beta. Peirce did not design
the graphs for this purpose, but in spite of that the graphical operations—
adding or removing the double cut, writing any proposition on any odd area,
erasing any proposition from any even area, extending the line of identity
inward through cuts—can all be performed quickly and easily. Whitehead
put the point nicely: “By relieving the brain of all unnecessary work, a good
notation sets it free to concentrate on more advanced problems, and in
effect increases the mental power of the race” (Whitehead [1948], 39).

In the second place, a graph of even meager complexity can be read in
several different English sentences, if only the reader will keep in mind two
or three basic patterns. Fig. 1 is the pattern for an alternative proposition,
and Fig. 2 is the pattern for a conditional. Just imagine what Fig. 3 would
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look like with a double cut surrounding P, and it will be obvious that ‘Either
not-P or Q’ means the same as ‘If P then Q’. A student of EG will learn
automatically many of the linguistic equivalences that require an excess of
time and symbols in algebraic notations.

co @ @

Fig. 1 Fig. 2 Fig. 3

7.22 EG Axioms and Natural Deduction

At the turn of the century, in a draft of a letter to his former student
Christine Ladd-Franklin, Peirce wrote: “You ask whether Logical Graphs
have any bearing on Non-Relative logic. Not much, except in one highly
important particular, that they supply an entirely new system of fundamen-
tal assumptions to logical algebra” (Ms L 237). It is safe to assume that
Peirce was thinking of the Alpha part of EG. And since the first completeness
proof for the propositional calculus was not discovered until 1921 (Emil
Post [1921]) Peirce presumably had in mind only that Alpha was as complete
as other formulations of non-relative logic. It is nevertheless true that
Alpha is a complete propositional calculus, and a rather economical one too,
since the rules of Chapter 3 together with SA as a single axiom (see the
discussion leading up to C1) are all that is required. A proof of this is given
in Appendix 4.

When the unattached line of identity (or heavy dot) is added as a second
axiom—and this was given in C6 of Chapter 4-Beta turns out to be a
complete functional calculus of the first order (with identity), a remarkable
fact discovered by J. Jay Zeman (Zeman [1964]). A proof of this is given in
Appendix 4, also.

According to C6, the unattached line merely asserts that some individual
object exists. The same assumption is made in Principia Mathematica and is
expressed there in theorem *10-25: (x)Fx D (3x)Fx. Russell and Whitehead
translate this as “what is always true is sometimes true”, and they add the
following commentary:

This would not be the case if nothing existed; thus our assumptions contain
the assumption that there is something. This is involved in the principle that
what holds of all, holds of any; for this would not be true if there were no
“any”.ﬁ

This Principia theorem has a straightforward translation in EG (Fig. 1), but
finding an algebraic equivalent of the Beta axiom is slightly complicated by

6 Whitehead and Russell (1927), I, 20. ‘Presuppositionless’ logics which do not make
this assumption have been investigated in Hintikka (1959), Leblanc and Hailperin
(1959), and Leonard (1956).
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Peirce’s reading of it as “something exists”(Ms 455, p. 21). The usual prac-
tice among logicians is to bring in predicates of some sort when existence is

Fig. 1 <S)

asserted of anything: “When, in ordinary language or in philosophy, some-
thing is said to ‘exist’, it is always something described” (Whitehead and
Russell [1927], I, 174). Peirce recognized that his axiom was a bit peculiar,
for he remarked that “it would be a nice question” whether it has “any
positive meaning or not” (Ms 454, p. 15); but he always thought of it asa
graph, and therefore as an assertion of some sort. In any case, since the line
asserts the numerical identity of the individuals denoted by its extremities
(C7), the formula (3x)[x = x] suggests itself as an algebraic translation of the
Beta axiom. This can be read ‘something is self-identical’.

In spite of the fact that SA and the unenclosed, unattached line of iden-
tity—and the double cut”—are correctly viewed as axioms, Peirce did not
develop EG as an axiomatic calculus in the style of Principia, of Church
(1956a), of Quine (1955). His most formal presentations of the system
result in additional rules of inference (metatheorems), not additional per-
missible graphs (theorems).® And the method of proof throughout these
presentations is that of “proving an implication by making an assumption
and drawing a conclusion”—which is precisely the way Alonzo Church
characterizes the method of natural deduction (Church [1956a}, 165).

Natural deduction systems were first introduced into the literature in
1934 by Gerhard Gentzen and Stanistaw Jaskowski.’ Such systems
ordinarily make no use of axioms, but employ the ‘rule of conditionaliza-
tion’ (the deduction theorem) as a primitive rule of inference. It is this use
of the rule that is credited to Gentzen and Jaskowski (Church [1956a],
164); the rule itself was known to the Stoics (Kneale and Kneale [1962],
170). Peirce was familiar with the rule. He had used it (informally) to
establish implications by deriving consequences from assumptions, '® and in

7 4.415, 567. The double cut as “‘a blank proposition always true” is alsolisted as an
axiom of an algebraic system which was modeled after EG in LN, p. 179r (December
11, 1900).

8 See LN pp. 114r-124r (June 1898); Ms 484 (August 1898); 4.485498 (1903); Ms
478, pp. 165-168 (1903).

9 Gentzen (1934-1935), and Jaskowski (1934). Jaskowski points out (on p. 5) that
his first results were obtained eight years earlier when he was a student of Eukasie-
wicz.

10 E.g., when discussing the third icon in his 1885 article “On the Algebra of Logic™,
Peirce reasons that since x —< z follows from (y <x) —<z, we may write [(y —<x)

—~<z] < (x < 2), 3.380. Cf. 4.485-498, which is part of Logical Tracts. No. 2,

written in 1903.
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1898 he proved it as a metatheorem of EG.!! Two years later he thought of
using this rule as a primitive rule of inference. The idea occurred to him while
he was experimenting with various statements of basic rules for his graphs and
for algebraic systems loosely modeled after EG. On page 180r of his Logic
Notebook (dated December 11, 1900), Peirce presented a list of primitive
rules of inference which included the following statements of the rule of
conditionalization (the claw symbol, —<, represents material implication):

(a) If A written alone is transformable into B, we can write alone
A <B.

(b) If A —<Bisscriptible alone A written alone can be transformed into
B.

It is clear that Peirce here anticipated Gentzen and Jaskowski in this one
particular, namely, with regard to the notion of using the rule of conditional-
ization as a primitive rule of inference. However, he does not seem to have
done much with it, and the expositions of EG which became standard do
not contain this rule as a primitive rule of inference.

Nevertheless, when Alpha is structured as a natural deduction system, the
result is a deductively complete propositional calculus. To show this, we
first delete C1 from our list of conventions, since it is by C1 that SA is a
graph; and if SA is a graph, it functions as an axiom, and completeness
follows as in Appendix 4 without need of the rule of conditionalization. So
we begin with Alpha, minus C1, but augmented by rule (a) above, stated
as follows:

(a) If P can be transformed into Q, we can scribe , on SA.

To show that this version of Alpha is complete, it is sufficient to obtain the
double cut as a theorem; for once this is done the completeness proof in
Appendix 4 applies. The first three steps are bracketed on the left to indi-
cate that they constitute the subordinate proof of the antecedent of rule
(a). Strictly speaking, the first graph that we are entitled to write on SA is
that in step 4.

1. P Assumption.
(O] 1, byRS.
3. P 2, byRS.
4. 1-3 by (a).

11 The proof occurs on p. 118r of the Logic Notebook. The rule is stated as follows:
“If one graph can be illatively transformed into another an enclosure may be written
consisting of an oval enclosing the former graph and an oval enclosing nothing but the
latter”.
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5. () 4, byRS.
6. 5, by R4, deiterating the twice enclosed P.
7. 6, by RIl.
8. @ 7, by R4,

7.23  The Categorical Syllogism

EG provides a particularly neat treatment of the categorical syllogism, with-
out the assumption of existential import. For (1) the operations of conver-
sion, obversion, and contraposition involve nothing more than the addition
or removal of double cuts, and (2) the validity of a syllogism can be deter-
mined by mere inspection.

(1) The first row in Fig. 1 below gives the graph of the four categorical
propositions (properly labeled); the second row gives the obverse, the third
the converse (where applicable), and the fourth the contrapositive (where
applicable) of the propositions diagramed in that first row.

{A] [E} m ol

S e | e
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Converse of 1: Invalid. ¢E_~G Invalid.

Contrapositiye @ Jnvalid, e, | @O

of 1:

The only ‘trick’ to translating these graphs into English, is in recognizing
that a graph of the form displayed in Fig. 2 can be read in two ways: ‘There

Fig. 2 )

is something which is not G’, and ‘There is something which is a non-G’.
This explains why the same graph can express both the O proposition and
its obverse. To understand the converses of the E and I propositions, it is
sufficient to recall that the order or arrangement of graphs on the same area
has no significance in EG. Note how obvious it is that propositions A and O,
and propositions E and I, are contradictories.

(2) One standard way to determine the validity or invalidity of a categor-
ical syllogism is to check it against rules specially designed to reveal these
properties. Such rules can be found in almost any introductory logic text,
and it is an easy matter to adapt them to the graphical notation. For
example:
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(@) The middle term (the rhema which occurs in both premisses) must
be once oddly and once evenly enclosed.

(b) A term may be evenly (oddly) enclosed in the conclusion if and
only if it is evenly (oddly) enclosed in a premiss.

(c) No categorical syllogism is valid whose premisses each contain an
odd number of cuts.

(d) If one premiss contains an odd number of cuts, then the conclusion
must contain an odd number of cuts.

(e) No categorical syllogism is valid in which the lines of identity of
both premisses are evenly enclosed.

The application of these rules to syllogisms expressed in graphs is frequently
more immediate than the application of comparable rules to the same syllo-
gisms expressed in other notations. Consider this argument: ‘All non-Con-
fucians are either indifferent to or contemptuous of the I Ching, but some
philosophers are Confucian. Hence, some philosophers respect the I Ching’.
After putting this into categorical form in traditional notations, it is still
necessary to perform three operations on the first premiss in order to apply
the rules (obversion, conversion, and again obversion, are used to reduce the
five terms to three). But express the same syllogism in graphs, and inspec-
tion shows immediately that the middle term (the rhema ‘is a Confucian’) is
evenly enclosed in both premisses (Figs. 3 and 4), and that the rhema ‘res-

is a philosopher is a philosopher
Cis a Confucian Cmvects the / Ching
Fig. 4 Fig. 5

pects the I Ching’ is oddly enclosed in a premiss (Fig. 3) but evenly enclosed
in the conclusion (Fig. 5). The syllogism violates both rules (a) and (), and
is therefore seen to be invalid.

To enable EG to take care of the so-called ‘weakened’ moods of the
syllogism, those namely in which a particular conclusion is derived from two
universal premisses, it is necessary only to add as an additional premiss the
graph expressing the existence of objects denoted by the subject term of the
conclusion. This addition is necessary in spite of the Beta axiom, for it is
not enough that something exists; a syllogism requires that it be a certain
something.

7.24 Iconicity

According to Peirce, a good system of diagrams should be iconic: the parts
of the diagrams should be related to each other in the same way that the
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objects represented by those parts are themselves related to each other. 12
The utility of diagrammatic reasoning is its capacity to reveal unexpected
truth, and this capability is a peculiarity of icons: “A great distinguishing
property of the icon is that by the direct observation of it other truths
concerning its object can be discovered than those which suffice to deter-
mine its construction” (2.279; cf. Ms 650).

Peirce compared logic diagrams with maps: both convey somewhat diffi-
cult and complicated matters with a clarity and ease that can hardly be
matched in any other way, and both are particularly well suited for experi-
mentation (one can rearrange and recombine the parts of a logic diagram in
much the same way that one can use pins and rearrange them on a map to
represent the deployment of forces in a battle) (4.530). However, just as we
do not expect a map to include a marking of the position of every tree or
rock in the area it represents,!® so we should not expect a logic diagram
to be an exact replica of the objects it represents. The essential thing is that
the diagram shall be analogous to what it represents, “differing from the
objects themselves in being stripped of accidents” (Ms 524). That is, the
diagram should be constructed in such a way as to have all the character-
istics of the objects represented which have any bearing on the reasoning
involved, and no other characteristics (4.233; cf. 3.92).

Peirce was convinced that EG enjoyed to an unusually high degree the
essential features of diagrammatic thinking. The system, he claimed,

is truly diagrammatic, that is to say that its parts are really related to one
another in forms of relation analogous to those of the assertions they repre-
sent, and that consequently in studying this syntax we may be assured that
we are studying the real relations of the parts of the assertions and reason-
ings; which is by no means the case with the syntax of speech [Ms L 231, p.
15].

I suspect that Peirce had in mind not only the graphical analysis of inference
and propositions already described (7.1 above), but also certain other ways
in which the graphs may be said to be iconic.

Consider the Phemic sheet, which usually functions as a sheet of asser-
tion, SA. It is a two-dimensional continuity (see 4.561n.1). Peirce tells us
that the sheet may be imagined to represent the continuum of all true prop-
ositions. It seems necessary to think of this totality as a continuum, *‘since
facts blend into one another” (4.512). Furthermore, we sometimes deal
with universes other than “the universe of existent individuals—namely, all

12 3.363 (1885); 3.418 (1892); 3.556 (1898); 3.641 (1901); LN, p. 2861 (September
S, 1906).

13 Professor Fisch recalls working with Chinese maps of small areas which not only
showed every rock and tree but attached a short poem to each.
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those represented by the tinctures—so that the continuum of truths is to
be conceived as having “more dimensions than a surface or even than a
solid” (4.512; cf. 514). The two-dimensional tinctured surfaces provide a
much-simplified representation of this continuum, but still, in EG, we use
one continuum to represent another.

When Peirce said in 1898 that his first system of graphs, the entitative
system, was “quite unnatural in some of its leading conventions™ (Ms 484, § 2),
he was referring to such things as the interpretation of juxtaposition as
alternation (see 2.4 above). EG, for which juxtaposition is conjunction, is
more iconic; to scribe two graphs is like asserting them both (4.434). In
fact, to write down two propositions is to assert them both, if the writing is
submitted to a notary or a court of law or a university examiner. The
conditional proposition ‘If P then Q’ asserts neither P nor Q; in EG the
scroll provides a means for scribing the conditional without placing either P
or Q on the Phemic sheet itself. The cut provides an iconic way to diagram
false propositions, for it fences off its contents from the surface of the
sheet.

The line of identity asserts the numerical identity of the individuals
denoted by its extremities, and the continuity of the line is an excellent
likeness of the identity thus asserted (4.448, 561n.1). In Quine (1955), 70,
use is made of similar lines to illustrate the pronomial reference of letters
(such as x and y) in algebraic formulations of quantification. The propo-
sition ‘No man has seen every city’ is expressed semi-algebraically as
follows:

(x) (xisaman D ~ (y)(yisa city D X has seen y))

In this formula the letters x and y serve “merely to indicate cross-
references to various positions of quantification”. To display this Quine
presents the diagram of Fig. 1.

FEL S v o6 o e

Fig. 2 is a Quine diagram of the proposition ‘Whatever number you may
select, it will turn out, whatever number you may next select, that the latter
is less than, equal to, or greater than the former’.

Fig. 2

These diagrams serve a useful illustrative purpose, even if, as Quine suspects,
they are “too cumbersome to recommend themselves as a practical nota-
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tion” (Quine [1955], 70). But let us translate these propositions into exis-
tential graphs, Fig. 1 into Fig. 3, and Fig. 2 into Fig. 4.

Fig. 3 Fig. 4

Peirce’s diagrams are at least as iconic as Quine’s, and a good deal simpler.
Figs. 3 and 4 involve only three kinds of symbol: the heavy line, the spots,
and the cut. Figs. 1 and 2 involve six kinds of symbol: the line, the spots,
parentheses, the horseshoe, the tilde, and the wedge (plus three signs that
could as easily have been expressed in English).

Logic diagrams these days are certainly less familiar than algebraic nota-
tions of logic. But are they really too cumbersome? Would it be fair to say
that they are “less perspicuous than the usual” notations, as some say of the
Polish notation (Church [1956a], 38 n. 91)? Well, if a facile and perspicuous
notation is one that can be quickly learned and easily manipulated, then
years of experience with university students have convinced me that EG is
the most perspicuous, and Principia notation the least. The unusual ease
with which inferences can be drawn in EG is something of an unexpected
bonus.

In addition to what has already been mentioned, the graphs were iconic
for Peirce in a special way: “My ‘Existential Graphs’ have a remarkable
likeness to my thoughts about any topic of philosophy” (Ms 620, p. 9). By
this he certainly meant to express his preference for thinking in diagrams:

I do not think I ever reflect in words: I employ visual diagrams, firstly
because this way of thinking is my natural language of self-communion, and
secondly, because I am convinced that it is the best system for the purpose
[Ms 620, p. 8].

But I think he also had in mind that the structure of EG captures so many
important features of his own philosophy. The ‘likeness’ was built in.

7.25 Postscript

In the spring of 1903 Peirce delivered a series of lectures on pragmatism at
Harvard University. An early draft of the second lecture contains the follow-
ing remark:
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But I must tell you that all that you can find in print of my work on logic
are simply scattered outcroppings here and there of a rich vein which
remains unpublished.}4

This is a happy metaphor indeed. Wide ranging and powerful, Peirce’s publi-
cations suggested an extensive layer of thought stili not brought to the
‘surface’ of public attention and containing material which would reveal the
relationships between the parts of his work already visible. He supposed that
most of his material had been written down, but thought that “‘an entirely
new presentation” was required. This would have been a monumental task,
and necessary support was not forthcoming.!® As a result, although Peirce
kept at it, much of the mining of that rich vein was left to others.

Now 1 believe that EG could play a significant role in the systematic
study of Peirce’s logic. In the first place, he packed into the system a great
deal of his thinking about logic, and he used it to extend the reach of his
logic into modalities. In the second place, he applied EG to “the most
difficult problems of logical theory™ (4.571). In this connection, its “true
utility” is the support it gives to the mind “by furnishing concrete diagrams
upon which to experiment”.

Peirce also found his graphs important in relating his work in logic to his
work in philosophy. He thought, for instance, that they would provide a
“less mechanical and fatiguing™ introduction to the logic of relatives, an
introduction which would “better display its living ideas and connections
with philosophy and with life” (Ms 436, pp. 28-29). Peirce included an
exposition of EG in his series of articles on pragmaticism, because with the
graphs his proof of pragmaticism “could best be rendered plain” (Ms 300, p.
15). In fact, all the elements of his philosophy were to come into focus
together in this proof: the synechism (5.415), the realism and the theory of
modality (5.453ff), the theory of signs and the distinction between deduc-
tion, induction, and retroduction (Ms 330), and more.

In view of these considerations, and the many more developed through-
out this book, it should not be puzzling that Peirce placed a high valuation
on his graphs. '* The major reason for this assessment was made clear from
start to finish since Peirce repeatedly stated that his purpose in constructing

14 Ms 302, p. 10. If more than this is to be quoted, then the entire passage should be
quoted as in Murphey (1961), 1 n.1, unlike CP 2, p. 2.

15 In 1902 Peirce applied to the Carnegie Foundation (Ms L 75) for support in making
such a new and comprehensive presentation of his logic. The application was rejected.
16 According to Zeman (1968), 150, Peirce attached to EG ‘“‘that puzzling
‘subtitle’ > —chef d’ceuvre—because he wanted to develop a logic of continua and he
hoped the graphs would make this possible. But it is highly improbable that Peirce’s
tremendous amount of work on logic diagrams was motivated by any single application
or use he hoped to make of them.
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EG was to build an engine of analysis. As he developed the graphs and
applied them to various problems, it was always their experimental possi-
bilities and analytic power that chiefly pleased him. The letter to Jourdain
which opened this chapter surely counts as evidence for this. As to the
phrase ‘chef d’oeuvre’, —whether Peirce was saying that EG was his chief
work, or was the chief part of his chief work, either claim places the graphs
at the center of his philosophy.
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A SELECTIVE CHRONOLOGY OF PEIRCE’S WORK ON LOGIC

The best published accounts of Peirce’s work on formal logic are given by
Church (1956a), Bochenski (1961), and Kneale and Kneale (1962). Lewis
(1960), although written in 1918, contains a still valuable account of the
historical development of symbolic logic, of which 28 pages are devoted to
Peirce; and Berry (1952), though restricted in scope, is also useful for our
purpose. An examination of these five works indicates that the bulk of
Peirce’s contributions to logic are located in fourteen papers, ranging in date
from 1867 to 1902. The fourteen papers are marked with an asterisk in the
following list. Apart from these, the list is limited to works which are
especially relevant to logic graphs. Numbers such as G-1867-1a are Burks’s
bibliography numbers, as given in CP 8.

*G-1867-la. “On an improvement in Boole’s Calculus of Logic”, 3.1-19.
Besides suggesting certain improvements for Boole’s calculus of probability
(see Lewis [1960], 100ff), this article gives a clear statement of non-
exclusive alternation. Peirce points out that the use of this type of alterna-
tion produces an exact parallelism between the theorems involving logical
addition and those involving logical multiplication (Bochenski [1961], 303;
Kneale and Kneale [1962], 422-423).

*G-1867-1d. “Upon the Logic of Mathematics™, 3.20-44. Here Peirce
begins to use the upper case sigma (¥) to designate the logical (not the
arithmetic) sum, and this may be an early anticipation of his later use of this
symbol as the existential quantifier. In a later paper, G-1870-1, the upper
case pi (IT) is used to designate the logical product; it will later be used as
the universal quantifier (Berry [1952], 161).

These 1867 articles were written as part of a series on logic that Peirce
published in the Proceedings of the American Academy of Arts and
Sciences. In both, Peirce indicates how mathematical relations, operations,
and systems may be derived from symbolic logic, and in doing this he
anticipates (in a fragmentary, but nevertheless noteworthy manner) the
approach of Whitehead and Russell (1927) (Lewis [1960], 100ff).
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*G-1868-2¢c. “Grounds of Validity of the Laws of Logic: Further Conse-
quences of Four Incapacities”, 5.318-357. Partly because of this paper (see
especially 5.340 and n.l) Peirce is credited with being one of the few logi-
cians of that day to have a scholarly knowledge of and interest in the
semantical paradoxes (Bochenski [1961], 387).

G-1869-2. A series of lectures on “British Logicians. 1.28-34 is from
Lecture 1, “Early Nominalism and Realism”. Peirce remarks that the suc-
cesses of scientists and mathematicians are due in part to their use of obser-
vation, and he quotes Gauss’s statement “‘algebra is a science of the eye”
(1.34).

*G-1870-1. “Description of a Notation for the Logic of Relatives, result-
ing from an Amplification of the Conceptions of Boole’s Calculus of Logic”,
3.45-149. This is the only paper on our list that dates from the 1870%. It is
cited for two reasons (apart from the previously mentioned use of #): (1)
Peirce here works out systematically (the first such systematic treatment)
the notion of class inclusion, and he introduces the claw sign —< to stand
for this relation;' and (2) the treatment given to relative terms amounts to
an extension of Boole’s logical algebra beyond the realm of absolute terms
(beyond Aristotle’s syliogistic, for example), an extension which would re-
sult in a development of the logic of relations as the logic of classes had
been developed (Kneale and Kneale [1962], 428429; Lewis [1960], 83). A
calculus such as the one described in this paper would, according to Peirce,
be “practically useful in some difficult cases, and particularly in the investi-
gation of logic” (3.45).

1870. Benjamin Peirce defines mathematics as the science which draws
necessary conclusions (B. Peirce [1881], 97). Charles remarks upon his
father’s definition in several places (see for instance 4.229), and in one
undated manuscript he shows how it serves to distinguish the mathematician
from the logician: “The mathematician’s interest in reasoning is as a means
of solving problems. ... The logician, on the other hand, is interested in
picking a method to pieces and in finding what its essential ingredients are”
(Ms 78).

1878. At about this time William K. Clifford and James J. Sylvester
began to use chemical diagrams to represent algebraic invariants (Murphey
[1961], pp. 196-197).

1879. Peirce becomes associated with Sylvester at the Johns Hopkins
University.

*G-1880-8. “On the Algebra of Logic”, 3.154-251. This is the first of
five papers on our list that date from the 1880’s. In this one (see especially
3.204ff) Peirce gives the process of reduction to both full disjunctive normal

1 Berry (1952), 154; Bochenski (1961), 304-305; Lewis (1960), 83. As noted in
section 7.22, Peirce also used the claw symbol as a sign of material implication.
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‘formand its dual, the fullconjunctive normal form (Church [1956a], 166 and
n.299; see also Lewis [1960], 96 and Berry [1952], 154).

*G-c.1880-1. On a Boolean algebra with one constant (title not supplied
by Peirce), 4.12-20. This paper was not published during Peirce’s lifetime. In
it Peirce demonstrates the possibility of developing the entire logic of prop-
ositions in terms of the single operator now called ‘joint denial’: ‘‘Neither
P nor Q is true” (Berry [1952], 155; Bochenski [1961], 344-345; Church
[1956a], 133n.207; Kneale and Kneale [1962], 423, 526). The first publica-
tion of the fact that such a possibility exists was by Sheffer in 1913—thirty-
three years later (Sheffer [1913)).

*G-1881-7. “On the Logic of Number™, 3.252-288. This article includes,
among other things, some of the essentials of number theory (for example,
informal statements of recursion equations for addition and multiplication)
and a definition of simple order (Church [1956a], 322n.526 and 337n.550).

1882. Peirce to O. H. Mitchell, a letter dated December 21, 1882, Ms L
294. “The notation of the logic of relatives can be somewhat simplified by
spreading the formulae over two dimensions™. First notice by Peirce of a
system of logic diagrams to treat of the logic of relatives.

*G-1883-7d. “The Logic of Relatives”, 3.328-358. This appeared as
“Note B” in the volume edited by Peirce entitled Studies in Logic, By
Members of the Johns Hopkins University (Peirce [1883]). It is considered to
be one of Peirce’s clearest statements of his theory of thé logic of relatives
(Bochenski [1961], 377-379; Lewis [1960], 85). Here and in the next article
listed Peirce “created a symbolism adequate for the whole of logic and
identical in syntax with the systems now in use” (Kneale and Kneale
[1962], 431). One of the major features of his symbolism is the explicit use
of 2 and 7 as quantifiers and the use of subscripts to identify terms (Berry
{1952}, 161; Kneale and Kneale [1962], 430-431).

*G-1885-3. “On the Algebra of Logic: A Contribution to the Philosophy
of Notation”, 3.359-403. This is the only one of the fourteen papers to be
mentioned by all five of our ‘authorities’ (first paragraph, this appendix). Of
the many items of value to be found here, the following eight are singled out
for attention. (1) In this paper we find the first explicit use of two truth-
values and the first statement of the truth-table decision procedure as a
general procedure (Church [1956a], 25n.67 and 162; Berry [1952], 158;
Bochenski [1961], 329-330; Kneale and Kneale [1962], 420). (2) Peirce
presents an especially clear and adequate statement of quantification theory
(Berry [1952], 165; Bochenski [1961], 348-349; Kneale and Kneale [1962],
432f; Lewis [ 1960}, 96ff), which includes his special notational contribution,
namely, the use of an operator variable in connection with the quantifier
(discovered independently by Peirce, but six years after Frege published it
in his Begriffsschrift) (Church [1956a}], 288n.453). (3) The article contains
probably the earliest use and description of the method of transforming
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quantified statements which is known as reduction to prenex normal form?
(3.396). (4) Peirce gives the modern definition of identity (3.398), avoiding
Leibniz’s confusion of use and mention.® (5) The so-called ‘Peirce-
Dedekind’ definition of an infinite class (as one having a one-to-one cor-
respondence with a proper subclass) is presented (Church [1956a], 344n.565;
Kneale and Kneale [1962], 440). (6) Peirce suggests that the negation of a
proposition p be expressed by means of the formula p <a, ‘If p then o,
where «a is said to be an index of no matter what token (3.384-385). This is
an anticipation of an expression Russell was to use in 1903 and 1906
(Church [1956a], 151n.226). (7) In this same paper is what Bochenski
considers to be one of the best justifications of the use of material implica-
tion in formal logic (Bochenski [1961], 313-314). (8) All deductive reason-
ing involves observation, and the observation usually takes the form of
observation of a diagram (3.363).

1886. A. B. Kempe publishes his “Memoir on the Theory of Mathe-
matical Form” (Kempe [1886]).

1887. Peirce to Kempe, aletter dated January 17, 1887 (the date is given
in Kempe [1897], 453). This letter of criticism led Kempe to “reconsider
certain paragraphs” of his Memoir and make the “amendments™ of Kempe
(1887).

1889. “Notes on Kempe’s Paper on Mathematical Forms”, Ms 714. In this
unpublished manuscript, dated January 15, 1889, Peirce begins to develop a
graphical system different from Kempe’s, and with similarities to EG.

*G-1892-1b. “The Critic of Arguments”, 3.404-424. (1) Peirce extends
the concept of function to many-place functions in 3.420-421 (Bochenski
[1961], 323-324). (2) Peirce again speaks of algebra as a kind of diagram
(3.419), and he remarks that “unpublished studies have shown me that a
far more powerful method of diagrammatisation than algebra is possible,
being an extension at once of algebra and of Clifford’s method of graphs;
but 1 am not in a situation to draw up a statement of my researches”
(3.418).

G-1891-1f. “Reply to the Necessitarians. Rejoinder to Dr. Carus”,
6.588-618. This was published in July of 1893. Deduction is a matter of the
perception of and experimentation with certain imaginary objects, such as
diagrams (6.595).

2 Church (19562), 292n.469; Lewis (1960), 98; Kneale and Kneale (1962), 432. In
3.505 Peirce says “The student ought to place 2°s as far to the left and I's as far to the
right as-possible”. This seems to be his closest published approximation to Skolem
normal form. ‘

3 Church (1956a), 300n.502; Bochenski (1961), 359. That Aristotle and Aquinas

had it straight is pointed out in Quine (1960), 116n.5. For a later statement (c.1903)
by Peirce, see 4.464.
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*G-1893-5. Grand Logic. Selections from this completed but unpublish-
ed book are scattered throughout CP. (1) Chapter 14, “Second Intentional
Logic™ (4.80-84), is a brief but interesting note on the logic of quantifica-
tion (Kneale and Kneale [1962], 433). (2) Peirce defends the doctrine of
association according to which the suggestion of some concept B by another
concept A is split into two operations, “one leading from A to AB and the
other from AB to B” (7.393). This passage is examined in section 7.11
above. (3) Peirce describes a concept as “the living influence upon us of a
diagram or icon” (7.467). (4) An unpublished portion of this book (Ms 410)
is the source of the Kempedike diagram, given in 2.3 above, of the
proposition ‘Every mother loves some child of hers’.

G-c.1895-1. “That Categorical and Hypothetical Propositions are one in
essence, with some connected matters™. Selections from this are scattered in
CP. “In every assertion we may distinguish a speaker and a listener” (2.334).
This is related to Peirce’s notion that all thinking is dialogical, and to his
distinction between the graphist and the interpreter in many of his accounts
of EG.

G-1896-3. “A Graphical Method of Logic”, a paper presented November
17-18 to the National Academy of Sciences.

*G-1896-6a. “The Regenerated Logic™, 3.425-455. This item and the
next are parts of a Monist review of Schroder [1895]. In this first part there
is a valuable passage regarding the benefits to be expected from logical
calculi (3.426-429; Bochenski [1961], 279-280); there is here (3.443), as
there was in G-1885-3, a statement attempting to justify the use of material
implication in formal logic (Bochenski [1961], 313-314); in addition there is
the first clear presentation of ‘formal implication’ (3.445; Bochenski
[1961], 354).

*G-1896-6b. “The Logic of Relatives”, 3.456-552. In this part of the
review of Schréder there is another anticipation of prenex normal form
(Church [1956a], 292n.469; Kneale and Kneale [1962], 431-432), and an
interesting and useful interpretation of the doctrine of relatives in terms of a
subject-predicate classification (Kneale and Kneale [1962], 432). In this
article Peirce introduces his entitative graphs.

1896. Peirce invents EG. See Ms 498, Ms Am 806*, Ms 500, and Ms L
4717.

From this time on there are a great many manuscripts concerned with
logical graphs. Only a few of the more interesting items are included in this
list.

G-1898-1. Several sets of lectures are included under this number. One
set, delivered at the Cambridge Conferences of 1898, had the title *“Reason-
ing and the Logic of Things”; another was apparently delivered under the
title “Detached Ideas on Vitally Important Topics”. In a first lecture (Ms
436) Peirce mentions the need for a brief and simple introduction to the



134 APPENDIX 1

logic of relatives and exact logic in general; as originally planned, the lecture
would have presented that simple introduction while comparing the entita-
tive and existential graphs. (See Peirce to William James, a letter dated
December 18, 1897; Ms L 224.)

1900. Peirce to Christine Ladd-Franklin, a letter dated November 9,
1900. Ms L 237. “You ask whether Logical Graphs have any bearing on
Non-Relative logic. Not much, except in one highly important particular,
that they supply an entirely new system of fundamental assumptions to
logical algebra”. See section 7.22 above.

1900. On December 11, 1900, Peirce writes out the primitive basis for
“A New Logical Algebra” which includes, as a primitive rule of inference,
the deduction theorem (LN, p. 180r). This is an anticipation of the natural
deduction systems developed by Gentzen and Jaskowski. See Chapter 7.22
above.

G-1901-6. Contributions to Baldwin (1902). Many of Peirce’s contribu-
tions to this dictionary are relevant to his work on logical graphs, and two
items are mentioned here. (1) In an article entitled ‘“Symbolic Logic” Peirce
writes:

If symbolic logic be defined as logic—for the present only deductive logic—
treated by means of a special system of symbols, either devised for the
purpose or extended to logical from other uses, it will be convenient not to
confine the symbols used to algebraic symbols, but to include some graphi-
cal symbols as well [4.372].

(2) In an article entitled “Logic (Exact)”, Peirce acknowledges that it is
logical algebra which has chiefly been pursued, but he suggests that logical
graphs “lead more directly to the ultimate analysis of logical problems than
any algebra yet devised” (3.619). This theme is often to be repeated in
Peirce’s writings.

N-1902-13. In a review of Friedrich Paulsen’s Immanuel Kant: His Life
and Doctrine, Peirce writes: *“Accordingly Kant’s great engine and distinction
is accurate analysis. But absolute completeness of logical analysis is no less
unattainable [than] is omniscience. Carry it as far as you please, and
something will always remain unanalyzed” (Ms 1454).

*G-.1902-2. Minute Logic. Parts of this uncompleted book are found
throughout CP. We are concerned with Chapter 3, “The Simplest Mathema-
tics”, 4.227-323. In this chapter Peirce again discusses truth-tables (not by
this name), giving them a theoretical basis, illustrating with an example
(4.260-262; Berry [1952], 158), and using them to define statement connec-
tives (Bochenski [1961], 330-331). He again mentions the single connective
for the propositional calculus (4.264) which he first mentioned in
G-c.1880-1 (Bochenski [1961], 344-345; Church [1956a], 133n.207). Peirce
also reasserts his view that metaphysics should be based on logic (2.121); he
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emphasizes the part played by observation in mathematical or necessary
reasoning (4.233); and he distinguishes between the mathematician and the
logician by saying that the mathematician is interested in drawing in-
ferences, the logician in the analysis of inferences (4.239).

G-1903-2. The Lowell Lectures of 1903. In many of these lectures and in
a syllabus prepared to supplement them Peirce develops EG in terms of the
three parts Alpha, Beta, and Gamma. This material is a major source for the
exposition in Chapters 3, 4, and 5 above.

G-1906-2. “Recent Developments of Existential Graphs and their Conse-
quences for Logic”, a paper presented April 16-18 to the National Academy
of Sciences. 4.573-584 are from it. Peirce applies EG to the problem of the
composition of concepts, and argues for the reality of possibilities. This
lecture marks an early stage in the development of the tinctures.

G-1905-1¢c. “Prolegomena to an Apology for Pragmaticism”, 4.530-572.
This, the third in the Monist 1905-1906 series on pragmaticism, was pub-
lished in October of 1906. It contains Peirce’s tinctured existential graphs,
discussed in detail in Chapter 6 above.

1909. Peirce to William James, a letter dated January 8, 1909. Ms L 224,
Peirce speaks of a proposed Monist article in which he will use EG to “show
in what logical analysis, i.e. definition, really consists™. -

1909. From February 16 to February 23 Peirce investigated systems of
triadic logic, recording it in his Logic Notebook, pp. 340v-344r. He antici-
pates certain results usually credited to Lukasiewicz and Post (Fisch and
Turquette [1966], and Turquette [1967] and [1969]). _

1909. In a manuscript entitled “Studies in Meaning”, dated from March
26 of 1909, Peirce writes: “My ‘Existential Graphs’ have a remarkable
likeness to my thoughts about any topic of philosophy” (Ms 620).

1911. Ms 670, “Assurance through Reasoning”, written in June, intro-
duces the tinctures into an exposition of EG.

1911. Peirce to A. D. Risteen, an uncompleted letter begun December 6,
1911. Ms L 376. Peirce gives a sketch of the history of EG, reaffirms his
opinion that all reasoning is dialogical, and points out that the purpose of
EG was not to serve as a calculus, but “to facilitate the anatomy, and
thereby the physiology of deductive reasonings”. This manuscript contains
the only reference I have found to a proposed Delta part of EG which
would deal with modal logic.

1913. Peirce to F. A. Woods, a letter begun October 14, 1913. Ms L 477.
This letter also begins with a short history of EG. Peirce then claims to have
found a fallacy in Prolegomena (G-1905:1c) which leads him to give an
alternative graph for Fig. 210 of 4.569. This passage is discussed in detail in
section 6.22 above.
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EG CONVENTIONS AND RULES

Reference to similar statements in CP is given for most of the conventions
and rules; references to the unpublished manuscripts are given in the text.
Certain Gamma conventions (see e.g. 5.11 and 5.13) and certain changes
occasioned by the tinctures (see e.g. 6.2 and 6.3) are omitted from this list.

Cl.
C2.

C3.

Cs.

Cé6.

C7.

C8.

C9.

C10.

Conventions

The sheet of assertion in all of its parts is a graph. 4.396, 397.
Whatever is scribed on the sheet of assertion is asserted to be true of
the universe represented by that sheet. 4.397.

Graphs scribed on different parts of the sheet of assertion are all
asserted to be true. 4.433.

The scroll is the sign of a conditional proposition de inesse. 4.401,
435, 437.

The empty cut is the pseudograph; and the cut precisely denies its
contents. 4.467.

The scribing of a heavy dot or unaftached line on the sheet of
assertion denotes the existence of a single, individual (but otherwise
undesignated) object in the universe of discourse. And it is always
permitted to scribe such a dot or line on the sheet. 4.404, 405,417,
559, 567.

A heavy line, called a line of identity, shall be a graph asserting the
numerical identity of the individuals denoted by its two extremi-
ties. 4.406, 444.

A branching line of identity with » number of branches will be used
to express the identity of the n individuals denoted by its 7 extremi-
ties. 4.446, 561.

Points on a cut shall be considered to lie outside the area of that
cut. 4.407, 450.

The broken cut expresses that the entire graph on its area is logical-
ly contingent (non-necessary). 4.410, 515.
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C11.

R1.

R2.

R3.

R4.

RS.

Ré6.

R7.
R8.
R9.
R10.

APPENDIX 3

For the interpretation of a line of identity which extends from metal
to color or from metal to fur, metal takes precedence; that is, the
line does not denote the abstraction (represented by the color or
fur), but denotes an existing individual to whom the abstraction
pertains.

Rules of Transformation

The rule of erasure. Any evenly enclosed graph and any evenly
enclosed portion of a line of identity may be erased. 4.492(1), 505.
The rule of insertion. Any graph may be scribed on any oddly
enclosed area, and two lines of identity (or portions of lines) oddly
enclosed on the same area, may be joined. 4.492(1), 505.

The rule of iteration. If a graph P occurs on SA or in a nest of cuts,
it may be scribed on any area not part of P, which is contained by
{P}. Consequently, (a) a branch with a loose end may be added to
any line of identity, provided that no crossing of cuts results from
this addition; (b) any loose end of a ligature may be extended in-
wards through cuts; (c) any ligature thus extended may be joined to
the corresponding ligature of an iterated instance of a graph; and (d)
a cycle may be formed by joining, by inward extensions, the two
loose ends that are the innermost parts of a ligature. 4.492(2), 506.
The rule of deiteration. Any graph whose occurrence could be the
result of iteration may be erased. Consequently, (a) a branch with a
foose end may be retracted into any line of identity, provided that
no crossing of cuts occurs in the retraction; (b) any loose end of a
ligature may be retracted outwards through cuts; and (c) any cyclical
part of a ligature may be cut at its inmost part. 4.492(2), 506.

The rule of the double cut. The double cut may be inserted around or
removed (where it occurs) from any graph on any area. And these
transformations will not be prevented by the presence of ligatures
passing from outside the outer cut to inside the inner cut. 4.492(4),
508, 567.

The rule of cut conversion. (a) An evenly enclosed standard cut may
be transformed (by being half erased) into a broken cut; and (b) an
oddly enclosed broken cut may be transformed (by being filled up)

into a standard cut. 4.516.
The rule of modal selectives. From § we can infer .4.518.

Any graph, evenly enclosed on metal, may be tinctured with color.
Any graph, oddly enclosed on color, may be tinctured with metal.
(a) Any province tinctured in color can be transformed into a pro-
vince of metal having a border in that color; and (b) a province
tinctured in metal but with a border in some tincture of color can be
transformed into a province of that color.
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COMPLETENESS AND CONSISTENCY

1 Alpha

A. Completeness. To show that Alpha is deductively complete, it is suffi-
cient to prove, as theorems and derived rules of Alpha, the axioms and rules
of inference of some other formulation of the propositional calculus which
is known to be complete. As an example of such a formulation consider
system P of Church (1956a), 149, whose primitive symbols include only
propositional variables, brackets, and the two operator symbols D and ~.
There are three formation rules (‘wff” and ‘wf” abbreviate ‘well-formed for-
mula’ and ‘well-formed’, respectively):

i. A variable standing alone is a wff.
ii. If Pisa wff, then ~P is a wff.
iii. IfPand Q are wffs, then [P D Q] is a wff.

The axioms of system P are given by the three following schemata:

P1. [PD[QDP]]
P2. [[PD[QDR]D[[PDQ]2[PDRI]]
P3. [[~P D ~Q]D[QDP]]

The single rule of inference is modus ponens:*
R1. From [P D Q] and P to infer Q.

Any wff of system P can be translated into graphical notation by the two
conventions that (1) every wf part of the form [P D Q] is to be replaced by
a graph of the form (? (Q)), and (2) every wf part of the form ~P is to be
replaced by a graph of the form (® . Applying these conventions to the
axioms and rule of system P gives us the following graphs (the suffix ‘(a)’
marks an Alpha translation of a wff of system P):

1 Since P employs axiom schemata rather than axioms, no rule of substitution is
necessary. This is true also for the system ML to be introduced in section 2, B.
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Pl(a).

AlA

P2(a).

@@o)
P3(a). @/
R1(). From (7_(Q) and P toinfer Q.

Now a proof in system P is a finite sequence of wffs, each of which is either
an axiom or the result of a use of modus ponens. Hence, just as the axioms
and rule of system P have been translated into EG, so each proof in P can be
rewritten step by step into graphical notation. And the result of this trans-
lation will be a proof in EG if we can obtain proofs of P1(a), P2(a), P3(a), and
R1(a) in Alpha. Alpha proofs of R1(a) and P2(a) have already been given in
Chapter 3, section 3, and proofs of P1(a) and P3(a) now follow.

P1(a). |

L CO RS,
2. 1, by R2.
3. r o ® 2, by R3.

Now add double cuts by RS.

LoD e
2. 1, by R2.
3. @09 Q@ 2,by R3.

4. ® @G ®) 3, by RS twice.
This completes the proof that Alpha is deductively complete.
B. Consistency. By ‘elementary graph’ is meant a graph according to C1 or

C2, that is, a graph which contains no cuts and is not a juxtaposition of
other graphs. By ‘tautology’ is meant a graph whose value, according to the
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valuation procedure sketchedin 3.2 above, is 1 (true) for all possible assign-
ments of values to its elementary graphs. In order to prove that Alpha is
consistent, we prove first that every theorem of Alpha is a tautology. To do
this it is sufficient to show that the single axiom of Alpha is a tautology,
and that the rules of transformation preserve tautologies in the sense that,
when the rules are applied to a tautology as premiss, the conclusion must
also be a tautology 2

Before even this is done, however, it is convenient to prove the five
following lemmas. Keep in mind that an area enclosed by n number of cuts
is called the nth area of a given nest of cuts (see 3.1 and Glossary). Further,
by ‘value of the cut K’ is meant the value of the enclosure whose outermost
cut is K.

Lemma 1. Let a and § be areas of the nest of cuts N, such thata D g. If
the value of § has no effect on the value of a, then the value of § has no
effect on the value of N.

Proof: This follows from the fact that, according to the valuation proce-
dure, the calculation of the value of a nest of cuts begins from inside the
nest and proceeds outwards. And in this calculation the value of each area is
used exactly once.

Lemma 2. To erase a graph from an area a can change the value of a from
2 to 1 but not from 1 to 2.

Proof: That the erasure of a graph P from « cannot change the value of a
from 1 to 2 follows from the way in which the valuation procedure assigns a
value to juxtaposition (conjunction), and from the stipulation that the
blank has the value 1 (which is relevant in case the erasure empties a). But the
erasure can change the value of a from 2 to 1, and it will do soin case P=2
and no other graph on a has the value 2.

Lemma 3. To insert a graph onto an area a« can change the value of a
from 1 to 2 but not from 2 to 1.

Proof: That the insertion of P onto a cannot change the value of a from
2 to 1 follows from the way juxtapostion is evaluated. But such an insertion
can change the value of a from 1 to 2, and will do so in case P =2,

Lemma 4. To erase a graph from an area § which is contained by an area o
and enclosed by two more cuts than a can change the value of a from 2 to 1
but not from 1 to 2.

Proof: To fix our ideas, consider Fig. 1 below, and suppose that a is
enclosed by n cuts, § by n + 2 cuts.

We distinguish two cases.
Case 1. The value of a is 1. By lemma 2, to erase a graph from § will

2 A method of proof different from the one used here is sketched in Roberts (1964),
118f. There the idea is to obtain suitable translations of the Alpha rules as derived rules
in a system of logic already known to be consistent. The more direct approach of this
appendix seemed interesting in its own right. '
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Ist area IL 8
N

1st cut ( n+2th cut
a

nth cut -

either make no change in the value of § or will change it from 2 to 1. If the
former, then, of course, no change will occur in the vahie of a. And if the
latter, again no change will be effected in the value of a; for when the value
of § is 1—no other value changes being made in the nest of cuts—, straight-
forward calculation shows that o must retain the value 1. Hence erasures
performed on §§ cannot change the value of a from 1 to 2.

Case 2. The value of a is 2. Then any change in the value of @ would be a
change from 2 to 1, and this change can be effected by a value change on g.
For suppose the value 2 of « is a result of the value 2 of the n + 1tk cut;
then the value of the n + 1th area must be 1. To change the value of 8 from
2 to 1 will change all of this, as straightforward calculation will show.

Lemma 5. To insert a graph onto an area § which is contained by a and
enclosed by two more cuts than « can change the value of a from 1 to 2 but
not from 2 to 1.

Proof: Consider Fig. 1 again, with a and § identified as in lemma 4. We
distinguish two cases.

Case 1. The value of a is 2. By lemma 3, to insert a graph onto g will
either make no change in the value of 8, or will change it from 1 to 2. If the
former, then no change will be effected in the value of a. If the latter, then
again no change will occur in the value of «; for if the value of 8 changes
from 1 to 2—no other value changes being made in the nest of cuts—,
straightforward calculation shows that a must retain the value 2. Hence
insertions onto § cannot change the value of a from 2 to 1.

Case 2. The value of a is 1. Then any change in the value of & would be a
change from 1 to 2, which can be effected by an insertion onto f, as the
reader can verify for himself.

We now address ourselves to the axiom and rules of Alpha.

The Alpha axiom is a tautology. That this is so, that the blank SA or any
of its parts is a tautology, is not a matter of calculation, but of stipulation.
This accords with the practice of Peirce, who took SA to represent true
propositions,> and it is reasonable enough if SA is taken simply as a blank,

3 Recall the discussion leading up to C1 in Chapter 3. Cf. 4.396, 431, 512, and 567.
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since to assert nothing is not to assert something false.

R1 preserves tautologies.

Proof: We proceed by mathematical induction on n, where 2n is the
number of cuts within which the erasure takes place (n=0,1,2,...).

Case 1. Erasure is applied to a graph which is evenly enclosed within zero
cuts (n = 0), that is, erasure is applied to a graph which is scribed un-
enclosed on SA. By lemma 2, the value of the total graph cannot be changed
from 1 to 2 by this operation; hence, if the premiss is a tautology, so is the
conclusion.

Case 2. Given some nest of cuts, the hypothesis of induction is that
erasure preserves tautologies when applied within 2k of those cuts (n = k).
We have to show that under this assumption, erasure also preserves tauto-
logies when applied within 2(k+1) cuts (n=k+1). Now according to lemma 2,
to say that erasure preserves tautologies when applied within 2k cuts is to say
that to change the value of the 2kzh area from 2 to 1 will not change a tauto-
logy into a non-tautology. It follows that any operation which can produce
this and no other change on the 2kk area must preserve tautologies.* But
according to lemma 4, the application of erasure to the 2(k + 1)th area is
just such an operation. Hence, erasure preserves tautologies when applied
within 2(k + 1) cuts.

This completes the induction, and we may therefore conclude that
erasure preserves tautologies when applied within any even number of cuts.
That is, R1 preserves tautologies.

R2 preserves tautologies. )

Proof: We proceed by mathematical induction on n, where 2 n + 1 is the
number of cuts within which the insertion takes place (n=0,1,2,...).

Case 1. Insertion is applied to the first area of a nest of cuts (n = 0).
Now if the nest of cuts has the value 1, the value of its first area must be 2;
and by lemma 3, insertion cannot change this value. Hence if the premiss is
a tautology, so is the conclusion.

Case 2. Given some nest of cuts, the hypothesis of induction is that
insertion preserves tautologies when applied within 2k + 1 of those cuts (n =
k). We have to show that under this assumption, insertion also preserves
tautologies when applied within 2(k + 1) + 1 cuts (n =k + 1). Now accord-
ing to lemma 3, to say that insertion preserves tautologies when applied
within 2k + 1 cuts is to say that to change the value of the 2k + 1t/ area
from 1 to 2 will not transform a tautology into a non-tautology. It follows
that any operation which can produce only this change on the 2k + 1th area
must preserve tautologies. But according to lemma 5, the application of
insertion within two additional cuts—that is, within 2(k + 1) + 1 cuts—is just

4 We exclude simultaneous erasures from the 2kth area and from areas evenly
enclosed within fewer than 2k cuts. The operations of EG apply to one area at a time.
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such an operation. Hence, insertion preserves tautologies when applied with-
in2(k + 1)+ 1 cuts.

This completes the induction, and we may therefore conclude that inser-
tion preserves tautologies when applied within any odd number of cuts.
That is, R2 preserves tautologies.

It is convenient to treat R3 and R4 together.

R3 and R4 preserve tautologies.

Proof: Let N be a nest of cuts in which the operations are imagined to
take place. Let a be the area of the original or remaining occurrence of the
graph which is to be iterated or deiterated, and let § be the area onto which
the graph is iterated by R3 or from which it is deiterated by R4. It follows
that a D 8. Two cases are distinguished.

Case 1. The graph P to be iterated or deiterated has the value 1. Regard-
less of the value of 8 before the use of R3 or R4, it is clear from the way
juxtaposition is evaluated that the insertion of P onto g or its removal from
§ cannot change the value of 8, and therefore cannot change the value of N.
Hence, if the premiss is a tautology, so is the conclusion.

Case 2. The graph P to be iterated or deiterated has the value 2. Then the
value of « is 2 regardless of the value of § before and after the use of R3 or
R4, and it follows from this by lemma 1 that the value of 8 has no effect on
the value of N. Hence if the premiss is a tautology, so is the conclusion.

From cases 1 and 2 it follows that R3 and R4 both preserve tautologies.

RS5 preserves tautologies. This follows immediately from the valuation
procedure as applied to the cut. Namely, for any graph P, P and @
always have the same value.

We summarize our results so far in a sixth lemma:
Lemma 6. Every theorem of Alpha is a tautology.

Among the several senses of consistency that may be distinguished we
define two: (a) A system of logic § is said to be consistent with respect to a
given transformation by which each expression P is transformed into an
expression P, if there is no expression P such that both P and P’ are
theorems of S. (b) A system § is said to be absolutely consistent if not all of
its expressions are theorems (see Church [1956a}, 108).

Corollary 1. Alpha is consistent with respect to the transformation of P
into®).

Proof: By the definition of a taitology and the way in which the cut is
evaluated, not both P and (® can be tautologies. Hence, by lemma 6, not
both P and (®) can be theorems of Alpha.

Corollary 2. Alpha is absolutely consistent.

Proof: The empty cut is not a tautology (in fact, it always has the value
2), and therefore by lemma 6 is not a theorem of Alpha.
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A. Consistency. Any Beta graph can be transformed into an associated
Alpha graph (aag) by a two-step procedure: first, delete all the lines of
identity in the Beta graph; then, in the resulting graph, replace each spot by
an elementary Alpha graph according to this rule: different occurrences of
the same spot are to be replaced by the same elementary Alpha graph, and
different spots are to be replaced by different elementary Alpha graphs.

Lemma 1. Every Beta theorem has a tautology as aag.

Proof: The single axiom of Beta has a tautology as aag. This is
immediate, since the Beta axiom is the unenclosed line of identity, whose
aag is the blank SA.

Furthermore, the Beta rules of transformation preserve the property of
having a tautology as aag, that is, if the premiss or premisses of the rule have
this property, then the conclusion does also. In the case of RS, this is
immediate, since the only difference between the aag of the premiss and the
aag of the conclusion will be the presence in one, but not the other, of a
double cut; and this difference is fully accounted for by the Alpha version
of RS, which was proved to preserve tautologies in the preceding section. It
is also immediate in the case of those applications of the first four rules
which deal exclusively with the line of identity, since in this case the aag of
the premiss is identical to the aag of the conclusion, so that if one is a
tautology, so is the other.

All other applications of the first four rules will involve cuts or spots or
both as well as lines. Now reduction to an aag eliminates all lines of identity,
but apart from this it changes nothing with respect to the structure of a nest
of cuts: the only remaining difference is that where the Beta graph has a
spot on a given area of the nest, the aag has an elementary graph. Further-
more, the operations upon spots and cuts that are permitted by the Beta
rules are precisely the same operations that are permitted by the Alpha
rules. This is obvious, since apart from the clauses in the Beta rules which
pertain solely to the lines of identity, the Beta rules are identical to the
Alpha rules. It follows therefore that the difference between the aag of the
premiss and the aag of the conclusion is fully accounted for by the Alpha
version of these Beta rules; and since the Alpha rules preserve tautologies
(lemma 6 of the preceding section), if the aag of the premiss is a tautology,
then the aag of the conclusion is also.

This completes the proof of lemma 1.

Now by the definition of a tautology and the way in which the cut is
evaluated, it is clear that if a Beta graph P has a tautology as aag, its
negation (¥) does not. Hence by lemma 1 not both P and (@ can be
theorems. We therefore conclude the following:
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Corollary 1. Beta is consistent with respect to the transformation of P
into®.
Corollary 2. Beta is absolutely consistent.

B. Completeness. To show that Beta is deductively complete it is sufficient
to prove, as theorems and derived rules of Beta, the axioms and rules of
inference of some other formulation of the first order functional calculus
which is known to be complete. As an example of such a formulation
consider the system ML of Quine (1955), 88. It is convenient for our
purposes to treat ML as an extension of system P which was used in section 1
to prove Alpha completeness.® Namely, we add to the primitive symbols of
system P individual variables, functional variables, and parentheses. There
are two additional formation rules:

iv. If F is an m-ary functional variable, and x,, x,, . . ., X, are
individual variables, then F(x;x,. .. x,) is a wff.
V. If P is wf and x is an individual variable, then (x)P is wf.

An individual variable x is bound in a wff P if it occurs in a wf part of P of
the form (x)Q; otherwise it is free in P. If P has n free individual variables,
X1, X2, . . - Xp, the result of prefixing to P the n quantifiers(x,), (x2),. . .,
(x,) will be called the closure of P. We say ‘the’ closure of P, in spite of the
fact that the quantifiers may be prefixed to P in n! distinct ways; for all
these n! wffs are equivalent. The sign ‘b= P’means that the closure of P is a
theorem. There are five axioms or principles of ML, but since one of them is
modus ponens, which is a rule of system P and for which an EG proof has
already been given, we need consider only the following four:

*100. If P is tautologous, —P.

*101. = (x) [P DQ] D [(x)P > (x)Ql.

*102. IfxisnotfreeinP, P D (x)P.

*103. If P’ is like P except for containing free occurrences of y
wherever P contains free occurrences of x, then = (x)P D P'.

To translate these axioms into graphical notation, we supplement the two
conventions of section 1, A above: (3) every wf part of the form (X)P,
where x is free in P, is to be replaced by a graph of the form ; (4)
every wf part of the form (x)P, where x is not free in P, is to be replaced by

5 Thisisnot the way Quine treated it. He did not develop the propositional calculus in
an axiomatic fashion, and he did not use D and ~ as primitive symbols. Nevertheless,
the use of Quine’s system is particularly appropriate, because Quine has specified his
axioms in such a way as to ensure that the theorems contain no free individual
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a graph of the form , where P has no unoccupied hooks. The hole
drawn at the innermost end of the line of 1denuty indicates that that end of
the line is not attached to the hook of any spot.® We use this sign only when
the proximity of a line and a spot might give rise to confusion.

Let P be a Beta graph containing any number of hooks, each hook filled
with a line of identity, the lines variously connected and enclosed. By the
n-th degree closure of P is meant the graph of Fig. 1, formed by enclosing P
in two cuts, if necessary, and attaching a once enclosed line to n distinct

Fig. 1 Fig. 2 Fig. 3

lines of P. If the graph to be closed is an enclosure, the additional two cuts
are superfluous. For example, where P is defined as above, Fig. 3 is the n-th
degree closure of Fig. 2. (The hooks are placed on facing sides of the P’s to
avoid crossing lines of identity.)

There may be more than one n-th degree closure of the same graph, but
these differences do not affect our present discussion. When our remarks
apply to all degrees of closure, we shall speak of ‘closure’ or ‘the closure’
without specifying any degree.

The closures of many Beta graphs can be obtained as Beta theorems by
variations of the following proof schema, to be referred to by the abbrevia-
tion ‘CPS’ for ‘closure proof schema’. We prove that Fig. 3 above is a Beta
theorem. Note that what is inserted in step 2 of the proof is not necessarily
the graph P, but the graph of Fig. 4, which we shall call the n-th degree
extension of P, abbreviated P, ; it is formed from P by extending outwards,

Fig. 4 Pf’

beyond all cuts of P, the n lines with respect to which closure is to be
obtained. It is not excluded that some of these n lines are already thus
extended in P; if all of them are, P is the same graph as P,,.

1. RS.

variables. It was pointed out above in Chapters 4 and 7 that formulas with free indi-
vidual variables cannot be expressed in EG. In using ML to prove Beta completeness 1
follow the lead of Zeman (1964), but my account differs from Zeman’s in the graphi-
cal translations and proofs of several ML axioms.

6 Peirce did not use a special sign for vacuous quantification, but he knew it could
occur in EG, as his Beta axiom and rules R3 and R4 make clear. In Ms 478, p. 168, he
makes it explicit in the following theorem. ‘‘A branch of a Ligature extending into the
Area of a Cut without then being connected with any Hook is of no effect”.
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2 : 1, by R2.
3. J_: 2, by R3.

a. @ 3, by R3(b).

Now use R3(c) to join the lines. Upcoming proofs in the style of CPS will
be abbreviated, usually combining in one step the iteration by R3, the inward
extension of lines by R3(b), and the joining of lines by R3(c).

Consider first *100: If P is tautologous, I P. A ‘tautologous’ wff of ML
is a wff having the form of a tautology, that is, a wff which can be obtained
by replacing the propositional variables of a tautology of system P by wffs
of ML according to the rule that different occurrences of the same variable
are to be replaced by the same wff, and different variables are to be replaced
by different wffs. Similarly, any Alpha graph P (whether a tautology or not)
can be transformed into an associated Beta graph (abg), symbolized P*, by
replacing each of the elementary graphs of P with Beta graphs (which may
be spots or may contain spots, whose hooks must each be filled with a
heavy dot) according to this rule: different occurrences of the same elemen-
tary graph are to be replaced by the same Beta graph, and different elemen-
tary graphs are to be replaced by different Beta graphs.

Our proof of *100 in Beta makes use of the fact that any wif P of system
P can be translated into an Alpha graph P(a) by the conventions of section 1
above; and P(a) can be transformed into an abg P(a)* by the procedure just
described. Now it was proved in section 1 that if all the steps in a system P
proof of a theorem P are translated into graphs, the result is an Alpha proof
of the graph P(a). Each step of such a proof is an EG translation of an
axiom of system P—either P1(a), P2(a), or P3(a)—or an EG translation of
the result of modus ponens. Transform each graph of such an Alpha proof
of P(a) into the closure of its abg, and the result will be a Beta proof of the
closure of P(a)*, if we can prove as Beta theorems the closures of P1(a)*,
P2(a)*, and P3(a)*, and if we can prove as a derived rule of Beta that modus
ponens preserves closure, in the sense that if the rule is applied to premisses
which are closed, then the conclusion is closed. It would follow from this
that the closure of any abg of every Alpha theorem is a Beta theorem,” and
since the EG translation of any tautology of system P is an Alpha theorem,
this would complete the proof of the following graphical version of *100:

*100. If P is a tautology (of system P), the closure of P(a)* is a Beta
theorem.

We employ the method of the CPS, selecting a degree of closure appro-

7 The method is, in effect, that of mathematical induction with respect to the
number of steps in the proof of the closure of any Alpha theorem.
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priate to the structure of each axiom. Proofs for closures of any degree
would be strictly similar.

1. The second degree closure of P1(a)*, given in Fig. 5, is a Beta
theorem.

1. RS, R2.
@)

2. 1, by R3, as in CPS.

Now add double cuts by RS.
2. The third degree closure of P2(a)*, given in Fig. 6, is a Beta theorem.

Fig. 6

1. -Q RS, R2.
- ®-
2. 1, by R3, as in CPS.
3. 2, by RS and then R3(a) and (b).

Now use R3 to attach~¢ to the loose end of the line, and add three sets of
double cuts by RS.

3. The second degree closure of P3(a)*, given in Fig. 7, is a Beta
theorem.
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1 RS, R2.

2. D 1, by R3, as in CPS.

Now add two sets of double cuts by RS.
4. Modus ponens preserves closure. That is, from the graph of Fig. 8 we
can infer the graph of Fig. 9.

eEB® @

Fig. 8 Fig. 9
. @@ posin
2. @ Premiss.

3. @ 1, by RS.
4. @ 3, by Rl.
@ 4, by R4(b).
6. @ 5, 2 by R4.

This completes the proof of *100. ‘
*101 may be translated into the graph of Fig.10, under the assumption
that only the variable x occurs free in P and Q. For cases in which other

Fig. 10 @ ® (@)

variables occur free, the method of CPS (applied in the step 1 use of R3)
suffices to prove closure.

L (eB(e® RS, R2,R3.

2' @ l’ by Rs.

2, by R1 (breaking the line on
3. N < even, at the arrow drawn in step
2) and R4(b).

@
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Now add double cuts by R5.
#102 may be translated into the graph of Fig. 11, under the assumption

Fig. 11 ‘ @

that no variable occurs free in P. Otherwise, the method of CPS (in the step
1 use of R3) will give closure.

1. RS, R2, R3.
2. 1, by R3(b).

Now add double cuts by RS.

*103 may be translated into the graph of Fig. 12, under the assumption
that only x occurs free in P. Otherwise, the method of CPS (in the step 2
use of R3) will give closure.®

Fig. 12
1. RS, R2.
2. ) R3.

Ifit is desired to force the reading of the once enclosed line as a prefix to the
scroll itself, simply lengthen the line by R3(a) and add double cuts by RS,
obtaining Fig. 13.

Fig. 13 D

This completes the proof of Beta completeness. That Beta also contains the
axioms of identity was proved in Chapter 4, section 3.

8 The prime notation in the ML version of *103 signifies that the individuals denoted
by the individual variables may be different; this is accomplished in the graphical
version by the use of unconnected lines of identity.
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GLOSSARY

Area of a cut. The space within or enclosed by a cut.

Blot. One form of the pseudograph; a cut whose area is completely
blackened: @

Broken cut. ““A cut with many little interruptions aggregating about half its
length” (4.410).

Close of a cut. Same as ‘area’.

Cut. “A self-returning finely drawn line”(4.414). A finely drawn closed line.
Used as the sign of negation (it precisely denies its contents) and, when
empty, as the pseudograph. Sometimes spoken of as an actual incision in
SA (4.556). See ‘verso’.

Deiteration. The erasure of a graph of which at least two instances occur,
according to R4,

Double cut. A scroll with nothing in the outer area except, perhaps, lines of
identity extending from outside the outer cut to inside the inner cut.

EG. Abbreviation for ‘the system of existential graphs’.

Enclosure. A cut (4399, 4.414) or a scroll (4.437) taken together with its
contents.

Endoporeutic. Proceeding from the outside inward.

Entire graph. Everything that is scribed on SA.

Entitative. Defined by Peirce as “pertaining to actually existing objects . . . .
Entitative being, existence, real being; opposed to intentional or ob-
jective being” (Ms 1167, p. 17). See also the definition of this term in the
Century Dictionary.

Erasure. The removal of a graph instance from some area.

Evenly enclosed. Enclosed within 2n number of cuts, where n = O or any of
the positive integers.

Existential. Defined in the Century Dictionary as “Of, pertaining to, or
consisting in existence; ontological”.

First area. That area in a nest of cuts which is enclosed by precisely one cut.

First close. Same as “first area’.
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Graph. A proposition, an expression of any possible state of the universe. In
Peirce’s terminology, a graph is a type or universal, and is to be dis-
tinguished from a graph-instance.

Graph-instance. An occurrence of a graph. In Peirce’s terminology, a graph-
instance is a token, and is to be distinguished from a graph.

Graph-replica. Same as ‘graph-instance’.

Heavy dash. A sign of the individual: e

Heavy dot. Another sign of the individual: e

Hook. The place (usually not indicated in any special way) on the periphery
of a spot to which a line of identity can be attached.

Inner area. The area within the inner cut of a double cut or scroll.

Inner close. Same as ‘inner area’.

Inner cut. That cut of a double cut or scroll which is itself enclosed by
another cut.

Insertion. The scribing of a graph upon some area.

Instance. See ‘graph-instance’.

Iteration. The insertion of a graph of which at least one instance already
occurs on some area, according to R3.

Ligature. The totality of all the lines of identity that join one another.

Line of identity. A heavily drawn line ——which served as the quantifier
and as the sign of the individual for Peirce.

n-th area. That area of a nest of cuts which is enclosed by precisely n
number of cuts. '

Nest of cuts. A series of cuts each enclosing the next one.

Node. A thickened part of a line of identity. Peirce, for a time, drew the line
of identity with a node at each extremity, as a=s.

0ddly enclosed. Enclosed within 2n + 1 number of cuts, where n = 0 or any
of the positive integers.

Outer close. Same as “first area’.

Outer cut. That cut of a double cut or scroll (or nest of cuts generally)
which is not enclosed, but which encloses the other cut (or cuts) within
itself.

Partial graph. Any graph scribed in the presence of other graphs.

Peg. Same as ‘hook’. See 4.621. '

Phemic sheet. A term introduced in 1906 for the broadened interpretation
of the sheet on which graphs are to be scribed (4.553ff). See end of
section 6.1 and sections 6.2 and 6.22.

Place of a cut or graph. The area on which a cut is made or a graph is scribed.
Symbolized by braces, so that {P} denotes the place of P.

Pseudograph. The graphical expression of an absurdity, an ‘always false’
proposition. Usually symbolized by the blot or the empty cut.

Recto. The surface (unenclosed) of SA.
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Relative term. A rhema of more than one blank.

Replica. Early term for ‘instance’. See 4.395n.1.

Rhema. Peirce’s term for what is now sometimes called a ‘propositional
function’. Peirce defines it as “a blank form of proposition produced by
such erasures as can be filled, each with a proper name, to make a
proposition again” (4.438). See Section 7.121 above.

SA. Abbreviation for ‘the sheet of assertion’.

Scribe. To write or draw or otherwise place a graph on SA. “Since it is
sometimes awkward to say that a graph is written and it is sometimes
awkward to say it is drawn, | will always say it is scribed” (Ms 450, p. 8
verso).

Scroll. Two cuts, one within the other, with or without graphs scribed on
the inner or outer areas. Thus, the double cut is a form of the scroll. The
scroll is the sign of material implication.

Second area. That area of a nest of cuts which is enclosed by precisely two
cuts. The inner area of a double cut.

Second close. See ‘inner close’.

Selective. A letter used to designate an individual, used by Peirce as an
abbreviation. See 4.460. A sign resembling a heavy dot or dash, or
extended into a line of identity, attached to broken cuts or other graphs
to indicate “the state of information at the time of learning that graph
to be true” (4.518).

Sep. Same as ‘cut’.

Sheet of assertion. The surface upon which existential graphs are scribed.
Abbreviated ‘SA’.

Spot. An unanalyzed expression of a thema (4.441).

Total graph. The entire graph together with SA.

Universe of discourse. The domain of objects represented by SA. “DeMor-
gan introduced the term on November 6, 1846. Exact logic dates from
that day” (Ms 450, p. 7).

Verso. The reverse side of SA. The side of SA exposed when a cut, under-
stood as an incision, is made in SA and the excised piece turned over.
The place of graphs that are denied (4.556); for a brief time in 1906, the
representation of a universe of possibilities (4.581).
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